Water cycle along the northern rim of Hellas Basin throughout Mars' history by Staff Writers Mountain View CA (SPX) Nov 02, 2018
The northeastern rim region of Hellas impact basin, located in the southern hemisphere of Mars, contained numerous ephemeral lakes throughout Mars' history, a new study reveals. A new paper published in Astrobiology examines a region where depressions may have been hosted ponding water that originated from different sources, including precipitation, fluvial transportation and ground water. Sediments partially filled the depressions or formed fan shaped deposits within these paleolakes. Some of these paleolakes formed in fresh to degraded impact craters, others were situated in depressions of rolling terrain - paleolakes are lakes that existed at a time when the climate where it was located was different than today. The paper's authors are Henrik I. Hargitai, who conducted the research while at NASA Ames Research Center; Virginia C. Gulick, SETI Institute; and Natalie H. Glines, SETI Institute. The candidate paleolakes are identified along drainage systems that emptied into smaller depressions at the margin of Hellas Planitia, the largest and oldest impact basin on the surface of Mars, terminating in almost the same elevations along a 250 km long line. "We have found several groups of paleolakes with different geologic histories along each drainage system", the authors explain. Some paleolake groups served as the source of km-wide, hundreds of km long channel systems, while others formed through-flowing, or terminal lakes. "Some of the inlet channels and their deposits are similar to those produced by flash floods" the lead author, H. Hargitai explains. "Some of these flood discharges may even have been catastrophic in magnitudes (~ several 105 - 106 m3/s) similar to those that formed the Channeled Scablands in eastern Washington state, while the morphology of other channels and valleys suggest much lower, longer duration discharges more like those of the Mississippi River", co-author Gulick added. "These hundreds-of-meters wide channels cut across widespread ash-laden volcanic lava and impact debris terrains across the interior slope of Hellas basin". Through-flowing lakes are identified from two connecting channels, one inlet, and another outlet. Minor inlet channels in these sites suggest that these lakes were filled by ground water and provided only a minor water discharge on the surface. Other lakes may have been filled during occasional floods and several impact crater lakes were identified as fed precipitation, likely in the form of snow. One terminal impact crater paleolake is nearly filled with smooth sediment, which is similar to that found in the salars (saline lakes) in the Andes mountain region of Patagonia. This similarity suggests that conditions on Mars may have been comparable to those at the high-elevation, cold and arid Andes region at the time when those lakes formed. The list of 34 new candidate Martian paleolakes were compiled from a detailed hydrogeographic analysis of the Northeast Hellas region, where only one impact crater paleolake had been previously identified. This suggests that Mars was hydrologically much more active than previously recorded and that some regions hosted numerous lakes periodically throughout Mars' history. The lakes were fed by different hydrological processes, likely related to recurring hydrothermal activity from nearby volcanoes Hadriaca and Tyrrhena Paterae.
Research Report: "Paleolakes of Northeast Hellas: Precipitation, Groundwater-fed, and Fluvial Lakes in the Navua-Hadriacus-Ausonia Region" is published in Astrobiology 18, Number 11.
Novel Technique Quickly Maps Young Ice Deposits and Formations on Mars Tucson AZ (SPX) Oct 09, 2018 A new investigative technique has shown the latitudinal distribution of ice-rich landforms on Mars. This large-scale study enables future, more detailed investigations to study several young deposits of ice and sediment in the north polar basin. "The young ice deposits are extremely important for several reasons. First, they represent a different epoch in Mars' climate history when ice was stable at the mid-latitudes. We can probe them for more information and gather details about Mars climate," s ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |