Novel Technique Quickly Maps Young Ice Deposits and Formations on Mars by Staff Writers Tucson AZ (SPX) Oct 09, 2018
A new investigative technique has shown the latitudinal distribution of ice-rich landforms on Mars. This large-scale study enables future, more detailed investigations to study several young deposits of ice and sediment in the north polar basin. "The young ice deposits are extremely important for several reasons. First, they represent a different epoch in Mars' climate history when ice was stable at the mid-latitudes. We can probe them for more information and gather details about Mars climate," said Isaac B. Smith, Research Scientist at the Planetary Science Institute and co-author of three new papers on the topic. "Second, if humans are to explore Mars, they will want to go to mid-latitude locations where the Sun is up all year. Identifying where the ice is supports that. Finally, astrobiologists are very interested in locations where ice and rock interact because it may offer clues about habitability." The northern plains of Mars comprise several basins filled by sediments. The region has been proposed to have hosted an ancient ocean and currently contains ice in the ground even at latitudes where the ice is not stable. It is not known, however, what is the origin of the ice, whether it is related to the ancient ocean or recent glaciations. The ages of different surfaces and landforms are also not well known. Improving the geological context of the northern plains will help constrain outstanding questions about evolution of the climate and geology on Mars. "We used this type of investigation to speed up the process of seeking ground ice. The team broke up very long sections into 20 kilometer by 20 kilometer squares. In their mapping, if they identified a type of feature, then the grid cell was checked," Smith said. "This sped up the process of interpreting huge areas by orders of magnitude. The benefit is that we can now trace the latitudinal placement of various features in a spatial context, useful for making conclusions about ground ice on Mars. This is also a powerful reference map for more detailed investigations." Smith supported the research by providing information on what is found beneath the Martian surface using his analysis of data from NASA's Mars SHAllow RADar sounder (SHARAD) instrument on the Mars Reconnaissance Orbiter spacecraft. "The team mapped surface morphology but had no subsurface information before I joined, so for each project I analyzed hundreds of SHARAD observations seeking subsurface reflectors that could spatially correlate to the surface morphology they were mapping," Smith said. "This increased confidence in their detections and provided thickness measurements for the ice that they found." Smith's work was funded by a grant to PSI from NASA's Mars Reconnaissance Orbiter mission.
Research Reports
* "Gridmapping the Northern Plains of Mars: Geomorphological, Radar and Water-Equivalent Hydrogen Results from Arcadia Planitia," Jason Ramsdale et al., 2018 Sep. 14, Journal of Geophysical Research: Planets
* "Gridmapping the Northern Plains of Mars: Using Morphotype and Distribution of Ice-Related Landforms to Understand Multiple Ice-Rich Deposits in Utopia Planitia," Antoine Sejourne et al., 2018 Sep. 13, Journal of Geophysical Research: Planets
ScanMars demonstrates water detection device for astronauts on Mars Berlin, Germany (SPX) Sep 21, 2018 Analogue astronauts have successfully trialed a radar that could help future Mars explorers identify where to dig for water. ScanMars is an Italian experiment that was used to identify subsurface water features in the Mars-like Dhofar region of Oman during the AMADEE-18 analogue mission in February 2018. The results have been presented by Alessandro Frigeri of the Istituto Nazionale di Astrofisica (INAF) at the European Planetary Science Congress (EPSC) 2018 in Berlin. The ScanMars ground pe ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |