. Mars Exploration News .




MARSDAILY
Ancient Mars May Have Captured Enormous Floodwaters
by Staff Writers
Tucson AZ (SPX) Dec 05, 2012


Rodriguez and his co-authors propose in an article titled "Infiltration of Martian overflow channel floodwaters into lowland cavernous systems" published in Geophysical Research Letters that large volumes of catastrophic floodwaters, which participated in the excavation of Hebrus Valles, may have encountered their ultimate fate in vast cavernous systems.

An international research team led by the Planetary Science Institute has found evidence that indicates that approximately 2 billion years ago enormous volumes of catastrophic floods discharges may have been captured by extensive systems of caverns on Mars, said PSI Research Scientist, J. Alexis Palmero Rodriguez.

Rodriguez and the research team came to this conclusion after studying the terminal regions of the Hebrus Valles, an outflow channel that extends approximately 250 kilometers downstream from two zones of surface collapse.

The Martian outflow channels comprise some of the largest known channels in the solar system.

Although it has been proposed their discharge history may have once led to the formation of oceans, the ultimate fate and nature of the fluid discharges has remained a mystery for more than 40 years, and their excavation has been attributed to surface erosion by glaciers, debris flows, catastrophic floodwaters, and perhaps even lava flows, Rodriguez said.

The PSI-led teams' work documents the geomorphology of Hebrus Valles, a Martian terrain that is unique in that it preserves pristine landforms located at the terminal reaches of a Martian outflow channel. These generally appear highly resurfaced, or buried, at other locations in the planet.

Rodriguez and his co-authors propose in an article titled "Infiltration of Martian overflow channel floodwaters into lowland cavernous systems" published in Geophysical Research Letters that large volumes of catastrophic floodwaters, which participated in the excavation of Hebrus Valles, may have encountered their ultimate fate in vast cavernous systems.

They hypothesize that evacuated subsurface space during mud volcanism was an important process in cavern development. Mud volcanism can expel vast volumes of subsurface volatiles and sediments to the surface.

But because evacuation of subsurface materials generally occurs within unconsolidated sediments resulting caverns are transient and mechanically highly unstable.

However, the investigated Martian caverns appear to have developed within permafrost, which at -65 degrees Celsius (-85 degree Fahrenheit) - a typical mean annual surface temperature for the investigated latitudes - has a mechanical strength similar to that of limestone. Limestone rocks host most of the terrestrial cavern systems.

Possible cavern have been recently identified on Mars and their existence has caught much scientific and public attention because of their potential as exobiological habitats. However, their age and dimensions remain uncertain.

The discovery of vast caverns that existed in ancient periods of Mars shows that these habitats may have in fact existed during billions of years of the planet's history, Rodriguez said.

PSI Senior Scientist Mary Bourke and Research Scientist Daniel C. Berman are co-authors on the paper.

.


Related Links
Planetary Science Institute
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...







MARSDAILY
Meteorite samples provide definitive evidence of water and rock types on Mars
Tokyo, Japan (SPX) Nov 22, 2012
Researchers at the Tokyo Institute of Technology, NASA's Johnson Space Center, Lunar Planetary Institute, and Carnegie Institute of Washington report on geochemical studies that help towards settling the controversy that surrounds the origin, abundance, and history of water on Mars. The abundance and origin of water on Mars underpins a number of planetary science hypotheses including crust ... read more


MARSDAILY
To the moon and back for less than 2 billion dollars

NASA's GRAIL Creates Most Accurate Moon Gravity Map

Chinese astronauts may grow veg on Moon

WSU researchers use 3-D printer to make parts from moon rock

MARSDAILY
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

MARSDAILY
Khrunichev Completes Nauka Space Station Module

New Crew of ISS to Perform Two Spacewalks

It's a bird, it's a plane, it's... the Space Station

Space Station to reposition for science

MARSDAILY
Halfway Between Uranus and Neptune, New Horizons Cruises On

Dwarf planet Makemake lacks atmosphere

Keck Observations Bring Weather Of Uranus Into Sharp Focus

At Pluto, Moons and Debris May Be Hazardous to New Horizons Spacecraft During Flyby

MARSDAILY
Titan, Saturn's Largest Moon, Icier than Scientists Thought

NASA's Cassini Sees Abrupt Turn in Titan's Atmosphere

Cassini Finds a Video Gamers' Paradise at Saturn

Cassini Halloween Treat: Titan Glows in the Dark

MARSDAILY
NASA-NOAA Satellite Reveals New Views of Earth at Night

Skybox Imaging Completes Significant Testing Milestone Preceding its First Satellite and Product Launch

Seeing stars, finding nukes: Radio telescopes can spot clandestine nuclear tests

Raytheon technology instrumental in creating "Black Marble" image

MARSDAILY
Civil Space 2013 Symposium

Scientists say NASA's budget inadequate for its goals

What trends will take upper hand in space exploration?

Kickstarter's creative community takes hold in Britain

MARSDAILY
Astronomers discover and 'weigh' infant solar system

Search for Life Suggests Solar Systems More Habitable than Ours

Do missing Jupiters mean massive comet belts?

Brown Dwarfs May Grow Rocky Planets




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement