Mars Exploration News  
MARSDAILY
UAH gets NASA early-stage funding for "Marsbees" concept
by Staff Writers
Huntsville AL (SPX) Apr 10, 2018

Ultimately, the hope is that the Marsbees will be able to provide point measurements of the pressure, temperature, or chemical composition of the planet. "They could also aid in collaborative terrain mapping," says Dr. Landrum, who is an associate professor and the associate chair of UAH's Department of Mechanical and Aerospace Engineering. "And, of course, their capabilities would expand as miniaturized sensor technologies and more efficient batteries become available."

A proposal on Marsbees submitted by Dr. Chang-kwon Kang, an assistant professor of mechanical and aerospace engineering at The University of Alabama in Huntsville (UAH), was one of only 25 selected to receive a 2018 NASA Innovative Advanced Concepts (NIAC) award.

Dr. Kang's collaborators on the proposal include Drs. Farbod Fahimi, Brian Landrum, and Guangsheng Zhang from UAH's Department of Mechanical and Aerospace Engineering; Dr. Bryan Mesmer from UAH's Department of Industrial and Systems Engineering and Engineering Management; Dr. Rob Griffin from UAH's Department of Atmospheric Science; Dr. Taeyoung Lee from George Washington University's School of Engineering and Applied Science; and Dr. Aono Hikaru from the Tokyo University of Science.

"We are very excited about this opportunity," says Dr. Kang. "Flying on Mars is challenging because of the ultra-low density in the Martian atmosphere. Our preliminary work shows that bioinspired aerodynamic mechanisms can help in generating sufficient lift to fly on Mars."

The NIAC program, which invests in early-stage technology with the potential to revolutionize future space exploration, provides up to $125,000 in funding over nine months to awardees; those whose concepts successfully undergo feasibility testing are then eligible to apply for Phase II awards.

"The NIAC program gives NASA the opportunity to explore visionary ideas that could transform future NASA missions by creating radically better or entirely new concepts while engaging America's innovators and entrepreneurs as partners in the journey," says Jim Reuter, acting associate administrator of NASA's Space Technology Mission Directorate. "The concepts can then be evaluated for potential inclusion into our early-stage technology portfolio."

Dr. Kang's proposal, entitled "Marsbee - Swarm of Flapping Wing Flyers for Enhanced Mars Exploration," seeks to increase the set of possible exploration and science missions on Mars by investigating the feasibility of flapping-wing aerospace architectures in a Martian environment.

At its center is the Marsbee, a robotic bumble-bee-sized flapping-wing flyer whose large cicada-like wings have the ability to generate sufficient lift to hover in the Martian atmosphere. Integrated with sensors and wireless communication devices, these flyers would work in a swarm, with a mobile base serving as their recharging station and a main communication center.

Ultimately, the hope is that the Marsbees will be able to provide point measurements of the pressure, temperature, or chemical composition of the planet. "They could also aid in collaborative terrain mapping," says Dr. Landrum, who is an associate professor and the associate chair of UAH's Department of Mechanical and Aerospace Engineering. "And, of course, their capabilities would expand as miniaturized sensor technologies and more efficient batteries become available."

At present, however, the objective is more modest.

"With this Phase I award, we want to determine the wing design, motion, and weight that can hover with optimal power in Mars' atmospheric conditions and to assess the hummingbird micro-air vehicle - one of only a few robotic flappers in the world that can fly on Earth - in Mars conditions," says Dr. Kang. "Our UAH colleagues will numerically model, analyze, and optimize a flapping flyer for Martian atmospheric conditions, while our Japanese colleagues will develop and test a micro-flapping robot that is uniquely designed and constructed for the low-density atmosphere on Mars."

Should the team go on to receive a Phase II award, the goal will be to build on this research by addressing the maneuverability, wind gust rejection, takeoff/landing, power implications, remote sensing, and mission optimization of the Marsbees. But for now, says Dr. Kang, the focus is on the initial task of proving the feasibility of the Marsbee concept over the next nine months.

"One of our main goals for the first phase is to experimentally demonstrate that these Marsbees can lift off their own weight in Martian density conditions in the vacuum chamber of UAH's Propulsion Research Center," he says. "Our long-term overarching goal is to develop swarms of Marsbees that can help with the human exploration on Mars."


Related Links
Department of Mechanical and Aerospace Engineering at UAH
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Mars Parachute Test Successfully Launched from Wallops
Washington DC (SPX) Apr 03, 2018
The launch of a Black Brant IX sounding rocket carrying the Advanced Supersonic Parachute Inflation Research Experiment or ASPIRE was successfully conducted at 12:19 p.m. EDT, March 31, 2018, from NASA's Wallops Flight Facility in Virginia. The next ASPIRE test at Wallops is currently scheduled for later this summer. The rocket was carrying the Advanced Supersonic Parachute Inflation Research Experiment (ASPIRE) from NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. The payload ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
NAU planetary scientist's study suggests widespread presence of water on the Moon

Indian space agency postpones second Moon mission to October

Second blue moon of the year is last until 2020

Roscosmos, NASA to set common standards for first lunar orbit station

MARSDAILY
China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Earth-bound Chinese spacelab plunging to fiery end

MARSDAILY
Trail of glassy beads helps scientists track down missing crater

Here, There and Everywhere: Across the Universe with the Beatles

A star disturbed the comets of the solar system in prehistory

Russian scientists use lasers to destroy mini asteroids

MARSDAILY
SSL to provide of critical capabilities for Europa Flyby Mission

Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

MARSDAILY
Titan topographic map unearths cookie-cutter holes in moon's surface

Cassini finds Titan has 'sea level' like Earth

MARSDAILY
Denmark Hopeful to 'Enter Superliga' With Recent Space Project

New source of global nitrogen discovered

China receives data from three Gaofen-1 satellites

Draining peatlands gives global rise to laughing-gas emissions

MARSDAILY
'Ideas' conference to grapple with dark side of tech

Virgin Galactic completes first rocket-powered Unity space craft launch

Cargo-packed Dragon arrives at space station

SpaceX Dragon arrives at ISS with material samples and new testing facility

MARSDAILY
X-rays could sterilise alien planets in otherwise habitable zones

From car engines to exoplanets

Winning Exoplanet Rocket Sticker Selected

Paucity of phosphorus hints at precarious path for extraterrestrial life









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.