![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Boston MA (SPX) Oct 15, 2015
Launching humans to Mars may not require a full tank of gas: A new MIT study suggests that a Martian mission may lighten its launch load considerably by refueling on the moon. Previous studies have suggested that lunar soil and water ice in certain craters of the moon may be mined and converted to fuel. Assuming that such technologies are established at the time of a mission to Mars, the MIT group has found that taking a detour to the moon to refuel would reduce the mass of a mission upon launch by 68 percent. The group developed a model to determine the best route to Mars, assuming the availability of resources and fuel-generating infrastructure on the moon. Based on their calculations, they determined the optimal route to Mars, in order to minimize the mass that would have to be launched from Earth - often a major cost driver in space exploration missions. They found the most mass-efficient path involves launching a crew from Earth with just enough fuel to get into orbit around the Earth. A fuel-producing plant on the surface of the moon would then launch tankers of fuel into space, where they would enter gravitational orbit. The tankers would eventually be picked up by the Mars-bound crew, which would then head to a nearby fueling station to gas up before ultimately heading to Mars. Olivier de Weck, a professor of aeronautics and astronautics and of engineering systems at MIT, says the plan deviates from NASA's more direct "carry-along" route. "This is completely against the established common wisdom of how to go to Mars, which is a straight shot to Mars, carry everything with you," de Weck says. "The idea of taking a detour into the lunar system ... it's very unintuitive. But from an optimal network and big-picture view, this could be very affordable in the long term, because you don't have to ship everything from Earth." The results, which are based on the PhD thesis of Takuto Ishimatsu, now a postdoc at MIT, are published in the Journal of Spacecraft and Rockets.
A faraway strategy However, as humans explore beyond Earth's orbit, such strategies may not be sustainable, as de Weck and Ishimatsu write: "As budgets are constrained and destinations are far away from home, a well-planned logistics strategy becomes imperative." The team proposes that missions to Mars and other distant destinations may benefit from a supply strategy that hinges on "in-situ resource utilization" - the idea that resources such as fuel, and provisions such as water and oxygen, may be produced and collected along the route of space exploration. Materials produced in space would replace those that would otherwise be transported from Earth. For example, water ice - which could potentially be mined and processed into rocket fuel - has been found on both Mars and the moon. "There's a pretty high degree of confidence that these resources are available," de Weck says. "Assuming you can extract these resources, what do you do with it? Almost nobody has looked at that question."
Building a network in space The approach models the movement of cargo and commodities, such as fuel, in a supply chain network in space. Ishimatsu developed a new mathematical model that improves on a conventional model for routing vehicles. He adapted the model for the more complex scenario of long-term missions in space - taking into account constraints specific to space travel. The model assumes a future scenario in which fuel can be processed on, and transported from, the moon to rendezvous points in space. Likewise, the model assumes that fuel depots can be located at certain gravitationally bound locations in space, called Lagrange points. Given a mission objective, such as a set of weight restrictions, the model identifies the best route in the supply network, while also satisfying the constraints of basic physics. Ishimatsu says the research demonstrates the importance of establishing a resource-producing infrastructure in space. He emphasizes that such infrastructure may not be necessary for a first trip to Mars. But a resource network in space would enable humans to make the journey repeatedly in a sustainable way. "Our ultimate goal is to colonize Mars and to establish a permanent, self-sustainable human presence there," Ishimatsu says. "However, equally importantly, I believe that we need to 'pave a road' in space so that we can travel between planetary bodies in an affordable way." "The optimization suggests that the moon could play a major role in getting us to Mars repeatedly and sustainably," de Weck adds. "People have hinted at that before, but we think this is the first definitive paper that shows mathematically why that's the right answer."
Related Links Massachusetts Institute of Technology Mars News and Information at MarsDaily.com Lunar Dreams and more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |