The meteorite 'Black Beauty' expands the window for when life might have existed on Mars by Staff Writers Copenhagen, Denmark (SPX) Jul 02, 2018
The Mars meteorite Black Beauty has literally brought crisp news to Earth. Crust formation is an important step in the development of terrestrial planets, and what makes Black Beauty special and expensive is that it contains small pieces of the crust from Mars. More precisely, Black Beauty contains the rare mineral zircon, in which researchers have found a high concentration of hafnium. "Zircon is a very robust mineral that is ideally suited to provide absolute ages. In this context, the zircons can be used to establish a temporal framework to understand the formation history of the Martian crust," says Professor Martin Bizzarro, and continues: "Zircon also acts as a small time capsule as it preserves information about the environment where and when it was created. In this case, a time capsule with hafnium that originates from the earliest crust of Mars, which was present approximately 100 million years before the oldest zircon of Black Beauty was created. "Thus, Mars got an early start compared to Earth, whose solid crust wasn't formed until much later. However, it required a certain amount of courage to reach this result."
We crushed the meteorite "One of the big challenges has been that the zircons in Black Beauty are extremely small. This called for a courageous strategy: We crushed our precious meteorite. Or to be precise: We crushed 5 grams, says Martin Bizzarro and continues: "Today, I'm glad we chose that strategy. It released seven zircons, one of which is the oldest known zircon from Mars. And from the zircons and their content of hafnium, we can now conclude that the crystallization of the surface of Mars went extremely fast: already 20 million years after the formation of the solar system, Mars had a solid crust that could potentially could house oceans and perhaps also life.
More building blocks of life found on Mars Tampa (AFP) June 7, 2018 A NASA robot has detected more building blocks for life on Mars - the most complex organic matter yet - from 3.5 billion-year-old rocks on the surface of the Red Planet, scientists said Thursday. The unmanned Curiosity rover has also found increasing evidence for seasonal variations of methane on Mars, indicating the source of the gas is likely the planet itself, or possibly its subsurface water. While not direct evidence of life, the compounds drilled from Mars' Gale Crater are the most diver ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |