Mars Exploration News  
MARSDAILY
The Mars 2020 Rover features new spectral abilities with its new SuperCam
by Staff Writers
Nagoya, Japan (SPX) Sep 26, 2017


In addition to a faster LIBS system, the SuperCam will feature an entirely new conduction-cooled laser system to provide the non-destructive analysis ability of RAMAN spectroscopy, capable of detecting carbon-based signatures of organic materials.

As the NASA Curiosity rover roams the surface of Mars, its ChemCam captures the chemical makeup of its surroundings with a specially designed laser system. It is the most powerful laser to operate on the surface of another planet.

The burst of infrared light it fires lasts only a few billionths of seconds, but it is powerful enough to vaporize the spot it hits at more than 8,000C. Even from a distance, the ChemCam can examines rocks and soil using a process called Laser Induced Breakdown Spectroscopy (LIBS), where laser bursts atomize and excite components and spectral images capture their chemical signatures.

Here on Earth, scientists are already building the next generation's ChemCam with impressive upgrades and brand new spectral capabilities for the NASA Mars 2020 rover, named for the year of its scheduled launch.

In addition to a faster LIBS system, the SuperCam will feature an entirely new conduction-cooled laser system to provide the non-destructive analysis ability of RAMAN spectroscopy, capable of detecting carbon-based signatures of organic materials.

Together with the Centre National d'Etudes Spatiales (CNES) and The Research Institute in Astrophysics and Planetology (IRAP), Thales Group is in the final stages of testing the compact SuperCam system that will eventually endure harsh Martian conditions. They have already built and tested a full, representative model, the results of this research will be presented during the OSA Laser Congress, 1-5 October 2017 in Nagoya, Japan.

Unlike Curiosity's LIBS-only functionality, this new instrument will be able to switch between a LIBS mode and a Raman mode of lasing, a method that requires two different laser colors to excite and probe molecular vibration energies for its non-destructive chemical identification.

The second color is produced by a crystal that doubles the 1064 nanometer frequency used for LIBS measurements - which now produces 10 times as many shots in each burst of the laser for faster sampling.

This second, 532 nanometer beam will allow Mars 2020 to detect molecular structures evident of organic matter - evidence of past life. The new optical architecture required to produce the two operation modes, however, was not without its challenges.

The upgraded LIBS oscillator uses a diode pumped Nd:YAG crystal, as opposed to ChemCam's Nd:KGW, which provides the longer bursts but requires new methods to ensure functionality over a large temperature range.

Because the Nd:YAG absorbs over a narrow range of frequencies to lase at a given temperature, the SuperCam uses a multicolor stacked diode that can pump with a wide spectrum to account for a range in temperatures.

"This laser is running in burst mode, but with this laser we can do 1000 shots in one burst while the ChemCam laser was 10 time less," said Eric Durand, one of SuperCam's developers at Thales Group, France.

"We longitudinally pump this laser with a stack which is a broadband emitting so that when the temperature is changing, the ND:YAG crystal is still absorbing the light and the laser can be used over at least 50 to 60 degrees without temperature regulation."

Adding another complication to temperature control, the KTP crystal producing the green, frequency doubled light required additional stabilization.

"The most difficult aspect was to achieve the temperature range also with the green wavelength because we have to keep the efficiency over the whole range, and it was only possible by heating a little the KTP crystal," said Durand.

The temperature stabilization required to keep the system aligned and working for either mode is difficult enough to achieve in a lab, but this system was designed to have the same stability while on the rover as it traverses the rocky Martian terrain. Moreover, it has to meet tight size and weight restrictions that come with space travel and stay free of contaminants that would destroy its components - a feat achieved by sealing the instrument with laser-welding.

The robust and powerful abilities of the new SuperCam will be an invaluable chemical probe for the Mars 2020 rover and may just bring to life a whole host of new findings back to us here on Earth.

MARSDAILY
Laser-targeting AI Yields More Mars Science
Pasadena CA (JPL) Jun 26, 2017
Artificial intelligence is changing how we study Mars. A.I. software on NASA's Curiosity Mars rover has helped it zap dozens of laser targets on the Red Planet this past year, becoming a frequent science tool when the ground team was out of contact with the spacecraft. This same software has proven useful enough that it's already scheduled for NASA's upcoming mission, Mars 2020. A new pape ... read more

Related Links
The Optical Society
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Fly me to the Moon: For some, lunar village takes shape

First steps: returning humanity to the Moon

'Crash Scene Investigation' Reveals Resting Place of SMART-1 on Moon

Researchers create first global map of water in moon's soil

MARSDAILY
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

MARSDAILY
What we need to know to mine an asteroid

Hubble discovers a unique type of object in the Solar System

First space mining transaction in 10 years

NASA'S OSIRIS-REx executes slingshot around Earth

MARSDAILY
Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names

Hibernation Over, New Horizons Continues Kuiper Belt Cruise

Jupiter's Auroras Present a Powerful Mystery

MARSDAILY
NASA's $3.9 bn Cassini spacecraft makes death plunge into Saturn

Cassini Spacecraft Demise Is Bittersweet for PSI's Hansen

Aerojet Rocketdyne propulsion guides Cassini to its Grand Finale at Saturn

CU Boulder Scientists Ready for Cassini Mission to Saturn Grand Finale

MARSDAILY
Scientists Produce Best Estimate of Earth's Composition

Sentinel-5P launch preparations in full swing

Ball Aerospace Completes Spectrometer Testing and Verification on NASA's TEMPO Program

Experts set to meet in Kenya on space science

MARSDAILY
Aussie astronaut calls for establishment of national space agency

Space Cooperation Between China, Russia Needs Long-Term Mechanism

Mapping NASA's Space Missions

Tech dreams live or die on startup battlefields

MARSDAILY
Scientists propose new concept of terrestrial planet formation

The return of the comet-like exoplanet

New prediction of a detection wavelength for searching phototrophs on exoplanets

Hubble observes pitch black planet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.