Mars Exploration News  
MARSDAILY
Sustained planetwide storms may have filled lakes, rivers on ancient mars
by Staff Writers
Austin TX (SPX) Aug 20, 2020

New research from The University of Texas at Austin has used dry Martian lake beds to determine how much precipitation was present on the planet billions of years ago.

A new study from The University of Texas at Austin is helping scientists piece together the ancient climate of Mars by revealing how much rainfall and snowmelt filled its lake beds and river valleys 3.5 billion to 4 billion years ago.

The study, published in Geology, represents the first time that researchers have quantified the precipitation that must have been present across the planet, and it comes out as the Mars 2020 Perseverance rover is making its way to the red planet to land in one of the lake beds crucial to this new research.

The ancient climate of Mars is something of an enigma to scientists. To geologists, the existence of riverbeds and paleolakes - eons-old lake basins - paints a picture of a planet with significant rainfall or snowmelt. But scientists who specialize in computer climate models of the planet have been unable to reproduce an ancient climate with large amounts of liquid water present for long enough to account for the observed geology.

"This is extremely important because 3.5 to 4 billion years ago Mars was covered with water. It had lots of rain or snowmelt to fill those channels and lakes," said lead author Gaia Stucky de Quay, a postdoctoral fellow at UT's Jackson School of Geosciences. "Now it's completely dry. We're trying to understand how much water was there and where did it all go."

Although scientists have found large amounts of frozen water on Mars, no significant amount of liquid water currently exists.

In the study, researchers found that precipitation must have been between 13 and 520 feet (4 to 159 meters) in a single episode to fill the lakes and, in some cases, provide enough water to overflow and breach the lake basins. Although the range is large, it can be used to help understand which climate models are accurate, Stucky de Quay said.

"It's a huge cognitive dissonance," she said. "Climate models have trouble accounting for that amount of liquid water at that time. It's like, liquid water is not possible, but it happened. This is the knowledge gap that our work is trying to fill in."

The scientists looked at 96 open-basin and closed-basin lakes and their watersheds, all thought to have formed between 3.5 billion and 4 billion years ago. Open lakes are those that have ruptured by overflowing water; closed ones, on the other hand, are intact. Using satellite images and topography, they measured lake and watershed areas, and lake volumes, and accounted for potential evaporation to figure out how much water was needed to fill the lakes.

By looking at ancient closed and open lakes, and the river valleys that fed them, the team was able to determine a minimum and maximum precipitation. The closed lakes offer a glimpse at the maximum amount of water that could have fallen in a single event without breaching the side of the lake basin. The open lakes show the minimum amount of water required to overtop the lake basin, causing the water to rupture a side and rush out.

In 13 cases, researchers discovered coupled basins - containing one closed and one open basin that were fed by the same river valleys - which offered key evidence of both maximum and minimum precipitation in one single event.

Another great unknown is how long the rainfall or snowmelt episode must have lasted: days, years or thousands of years. That's the next step of the research, Stucky de Quay said.

As this research is published, NASA recently launched Mars 2020 Perseverance Rover to visit Jezero crater, which contains one of the open lake beds used in the study.

Co-author Tim Goudge, an assistant professor in the UT Jackson School Department of Geological Sciences, was the lead scientific advocate for the landing site. He said the data collected by the crater could be significant for determining how much water was on Mars and whether there are signs of past life.

"Gaia's study takes previously identified closed and open lake basins, but applies a clever new approach to constrain how much precipitation these lakes experienced," Goudge said.

"Not only do these results help us to refine our understanding of the ancient Mars climate, but they also will be a great resource for putting results from the Mars 2020 Perseverance Rover into a more global context."

Research paper


Related Links
University Of Texas At Austin
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Ice sheets, not rivers, carved valleys on Mars, new study says
Washington DC (UPI) Aug 03, 2020
The majority of Mars' valleys were carved by ice sheets, not flowing rivers, calling the Red Planet's supposed warm, watery past into question, according to new research published Monday in Nature Geoscience. "Valley networks on Mars have historically been interpreted as surface water flows, either sourced by surface liquid water or by ground water," study lead author Anna Grau Galofre told UPI. "The problem is that there are thousands of them and they all have very different morphologie ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Lander exhaust could cloud studies of Lunar ices

Orion Window Panel Complete for Front-Row View on Artemis Moon Mission

China's Chang'e-4 probe resumes work for 21st lunar day

India's Chandrayaan-2 images Sarabhai Crater

MARSDAILY
China's Mars probe over 8m km away from Earth

China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

MARSDAILY
Hubble snaps close-up of celebrity Comet NEOWISE

Second rehearsal puts OSIRIS-REx on path to sample collection

Tiny Asteroid Buzzes by Earth - the Closest Flyby on Record

ZTF Finds Closest Known Asteroid to Fly By Earth

MARSDAILY
Large shift on Europa was last event to fracture its surface

Technology ready to explore subsurface oceans on Ganymede

The Sun May Have Started Its Life with a Binary Companion

Ganymede covered by giant crater

MARSDAILY
Evidence for Volcanic Craters on Saturn's Moon Titan

Saturn's Moon Titan drifting away faster than previously thought

MARSDAILY
Gaofen 7 observation satellite starts formal duties

Meteorological satellites keep eye on clouds

Ball Aerospace completes airborne flights of small instruments to enable future Landsat missions

China set to launch two advanced marine satellites in 2021

MARSDAILY
ISS crew moved to Russian segment for 3 days to search for air leak

NASA perseveres through pandemic, looks ahead in 2020, 2021

Moonstruck 'aroma sculptor' builds scent from space

A QandA on the Demo-2 mission

MARSDAILY
Pristine space rock offers NASA scientists peek at evolution of life's building blocks

Rogue planets could outnumber the stars

Hundred cool worlds found near the sun

The most sensitive instrument in the search for life in space comes from Bern









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.