Mars Exploration News  
Researchers Uncover Protection Mechanism Of Radiation-Resistant Bacterium

Electron photomicrograph of Deinococcus radiodurans, the most radiation-resistant organism known. Findings frpm research into this bacterium could lead to new protections from radiation exposure. Credit: DOE.
by Staff Writers
Rockville MD (SPX) Mar 26, 2007
Recent discoveries by researchers at the Uniformed Services University of the Health Sciences (USU) could lead to new avenues of exploration for radioprotection in diverse settings. Michael J. Daly, Ph.D., an associate professor in USU's Department of Pathology, and his colleagues have uncovered evidence pointing to the mechanism through which the extremely resilient bacterium Deinococcus radiodurans protects itself from high doses of ionizing radiation (IR).

The results of the recent study, titled "Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance" were published in the March 20 edition of PLoS Biology.

These discoveries likely will cause a shift in D. radiodurans research, changing the focus from DNA damage and repair toward a potent form of protein protection. These findings point to new avenues of exploration for radioprotection, which could eventually influence how individuals are treated for exposure to chronic or acute doses of radiation; could lead to ways to protect cancer patients from the toxic effects of radiation therapy; and may prove significant in efforts to contain toxic runoff from radioactive Cold War waste sites.

Fifty years ago, scientists discovered D. radiodurans, leading to speculation that the incredible degree of resistance exhibited by the bacteria has to do with its mechanism of DNA repair, and the majority of research on the bacteria has centered on this hypothesis.

However, D. radiodurans has subsequently shown nothing obviously unusual in its DNA repair components, and it appears that bacteria at differing levels of resistance sustain the same amount of DNA damage from a given dose of IR. Additionally, many bacteria are killed by IR doses that actually cause very little DNA damage.

In a 2004 study, Daly and colleagues found that resistant and sensitive bacterial cells had significantly different metal concentrations, pointing to high levels of manganese and low iron levels as possible influences on cellular recovery following irradiation. The team showed that the most resistant bacterial species contained approximately 300 times more manganese and three times less iron than the most sensitive species.

In the new study, which examined the functional consequences of this disparity, the researchers demonstrated that high cytosolic manganese and low iron concentrations enable resistance by protecting proteins, but not DNA, from IR-induced oxidative damage.

related report
Protein Metal Jacket
Washington DC (SPX) Mar 26 - Recent discoveries by researchers at the Uniformed Services University of the Health Sciences (USU) could lead to new avenues of exploration for radioprotection in diverse settings. Michael J. Daly, Ph.D., an associate professor in USU's Department of Pathology, and his colleagues have uncovered evidence pointing to the mechanism through which the extremely resilient bacterium Deinococcus radiodurans protects itself from high doses of ionizing radiation (IR).

The results of the recent study, titled "Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance" were published in the March 20 edition of PLoS Biology.

These discoveries likely will cause a shift in D. radiodurans research, changing the focus from DNA damage and repair toward a potent form of protein protection.

These findings point to new avenues of exploration for radioprotection, which could eventually influence how individuals are treated for exposure to chronic or acute doses of radiation, could lead to ways to protect cancer patients from the toxic effects of radiation therapy, and may prove significant in efforts to contain toxic runoff from radioactive Cold War waste sites.

The findings may also have implications for the future of human spaceflight, where space missions can expose astronauts to high levels of radiation from sources like the Sun or galactic cosmic rays.

Fifty years ago, scientists discovered D. radiodurans, leading to speculation that the incredible degree of resistance exhibited by the bacteria has to do with its mechanism of DNA repair, and the majority of research on the bacteria has centered on this hypothesis.

However, D. radiodurans has subsequently shown nothing obviously unusual in its DNA repair components, and it appears that bacteria at differing levels of resistance sustain the same amount of DNA damage from a given dose of IR. Additionally, many bacteria are killed by IR doses that actually cause very little DNA damage.

In a 2004 study, Daly and colleagues found that resistant and sensitive bacterial cells had significantly different metal concentrations, pointing to high levels of manganese and low iron levels as possible influences on cellular recovery following irradiation. The team showed that the most resistant bacterial species contained approximately 300 times more manganese and three times less iron than the most sensitive species.

In the new study, which examined the functional consequences of this disparity, the researchers demonstrated that high cytosolic manganese and low iron concentrations enable resistance by protecting proteins, but not DNA, from IR-induced oxidative damage.

Community
Email This Article
Comment On This Article

Related Links
Henry M. Jackson Foundation for the Advancement of Military Medicine
News About Space Exploration Programs
Space Tourism, Space Transport and Space Exploration News



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


New Mexico Pushes For Spaceport Tax Support
Las Cruces NM (SPX) Mar 26, 2007
The New Mexico Space Authority says the state spaceport will cost about $27 million less than earlier estimates. The $198 million Spaceport America was originally slated to cost $225 million, the Las Cruces Sun-News reported.









  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • China Bans Firm From Selling Land On The Moon
  • What Lies Beneath
  • China May Launch First Lunar Probe Satellite In September
  • Shooting Marbles At Four Miles A Second

  • Researchers Uncover Protection Mechanism Of Radiation-Resistant Bacterium
  • The First Soyuz Mission Forty Years On
  • New Mexico Pushes For Spaceport Tax Support
  • Fifth Space Tourist To Carry Communist-Era Keepsake Into Space

  • Alice Views Jupiter And Io
  • A Look From LEISA
  • Smash And Grab On The Edge Of Sol Billions Of Year Ago
  • Jupiter Play Back Begins As Downlink Initiated From New Horizons

  • The Alien Volcano Of Io Is A Tvashtar
  • Juno Gets A Little Bigger With One More Payload For Jovian Delivery
  • Plume Of Tvashtar Rises From Io
  • Jovian Junior Red Spot Growing Stronger

  • Hot stuff on Venus!
  • Venus Express Sees Right Down To The Hell-Hot Surface
  • Saturn Joins Venus In The Vortex Club
  • Venus Express Program Wins Popular Science Award

  • Enceladus Geysers Mask the Length Of Saturn's Day
  • Saturn Stars In Three Hubble Movies
  • Cassini Spacecraft Images Seas Of Titan
  • A Hot Start Might Explain Geysers on Enceladus

  • Saab Space To Supply Antennas For New Generation Direct-To-Mobile Satellites
  • Virtual Reality For Virtual Eternity
  • Boeing Orbital Express to Demonstrate New On-Orbit Servicing Capability
  • Austin Physicists Slow And Control Supersonic Helium Beam

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement