Mars Exploration News  
MARSDAILY
Early Mars may have been a warm desert with occasional rain
by Staff Writers
Tokyo, Japan (SPX) May 03, 2018

The Grand Canyon (a) versus a Martian dendritic river system (b) (Arabia quadrangle; 12 degrees N, 43 degrees E). Slight morphologic differences between terrestrial and Martian comparisons may be attributed to the great differences in age. Scale bar is 60 km long.

The climate of early Mars is a subject of debate. While it has been thought that Mars had a warm and wet climate, like Earth, other researchers suggested early Mars might have been largely glaciated.

A recent study by Ramses Ramirez from the Earth-Life Science Institute (Tokyo Institute of Technology, Japan) and Robert Craddock from the National Air and Space Museum's Center for Earth and Planetary Studies (Smithsonian Institution, USA) suggests that the early martian surface may not have been dominated by ice, but instead it may have been modestly warm and prone to rain, with only small patches of ice.

While there is little debate about whether water previously existed on Mars, the debate regarding what the climate of Mars was like around 4 billion years ago has persisted for decades. Mars has a surprisingly diverse landscape, made up of valley networks, lake basins and possible ocean shorelines. These ancient fluvial features all provide clues that early Mars may have had a warm and wet climate, similar to Earth's (Figure 1).

However, this idea has challenges. First, the amount of solar energy entering the atmosphere at the time was considered to be too low to support a warm and wet climate. Secondly, recent climate studies have argued that Mars' ancient fluvial features can be accounted for with an icy climate, where widespread surfaces of ice promoted cooling by reflecting solar radiation (Figure 2).

Occasional warming events would have triggered large amounts of ice-melt, and fluvial activity as a result. However, Ramses Ramirez (Earth-Life Science Institute, Japan) and Robert Craddock (Smithsonian Institution, USA) suggest that early Mars was probably warm and wet, and not so icy, after a careful geological and climatological analysis revealed little evidence of widespread glaciation.

Recently, the authors' study, published in Nature Geoscience, argues that volcanic activity on a relatively unglaciated planet could explain Mars' fluvial features. Volcanic eruptions releasing CO2, H2, and CH4 may have contributed to the greenhouse effect, which in turn may have promoted warming, precipitation (including rain), and the flow of water that carved out the valleys and fluvial features.

However, this climate would not have been as warm and wet as Earth's, with precipitation rates of around 10 centimeters per year (or less), similar to Earth's semi-arid regions. This drier climate suggests that small amounts of ice deposits could have also existed, though these would have been thin, and liable to melt, contributing to the fluvial system.

In the future, the authors will be using more complex models in their analysis to investigate their warm, semi-arid climate hypothesis further. They will also be aiming to find out what the climate was like before these fluvial features formed on Mars. This will involve investigating the earliest history of Mars, which is a mysterious subject since little is currently known about it.

Research paper


Related Links
Tokyo Institute of Technology
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Clear as mud: Desiccation cracks help reveal the shape of water on Mars
Boulder CO (SPX) Apr 20, 2018
As Curiosity rover marches across Mars, the red planet's watery past comes into clearer focus. In early 2017 scientists announced the discovery of possible desiccation cracks in Gale Crater, which was filled by lakes 3.5 billion years ago. Now, a new study has confirmed that these features are indeed desiccation cracks, and reveals fresh details about Mars' ancient climate. "We are now confident that these are mudcracks," explains lead author Nathaniel Stein, a geologist at the California In ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
China has technological basis for manned lunar landing

Magma ocean may be responsible for the moon's early magnetic field

Lunar Orbital Platform Gateway is First Step Towards Mars - ESA Coordinator

US plans own space suits for EVAs instead of Russia's at Lunar Gateway

MARSDAILY
Astronauts eye more cooperation on China's space station

China to launch advanced space cargo transport aircraft in 2019

China unveils underwater astronaut training suit

China's Chang'e-4 relay satellite named "Queqiao"

MARSDAILY
Projectile cannon experiments show how asteroids can deliver water

Lyrid meteor shower to peak over the weekend

Close Call: Giant Asteroid Flies Through the Earth-Moon Orbit

Four Years of NASA NEOWISE Data

MARSDAILY
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

MARSDAILY
MARSDAILY
China to launch new Earth observation satellite in May

China launches Zhuhai-1 remote sensing satellites

Moon holds key to improving satellite views of Earth

Twin spacecraft to weigh in on Earth's changing water

MARSDAILY
Rescue Operations Take Shape for Commercial Crew Program Astronauts

Russia develops space sauna and washing machine

One detector doesn't 'fit all' for smoke in spacecraft

'Jedi' calls on Europe to find innovation force

MARSDAILY
Extreme Environment of Danakil Depression Sheds Light on Mars, Titan

Ultrahigh-pressure laser experiments shed light on super-Earth cores

Researchers simulate conditions inside 'super-Earths'

Droids beat astronomers in predicting survivability of exoplanets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.