Mars Exploration News  
MARSDAILY
New water map of Mars will prove invaluable for future exploration
by Staff Writers
Paris (ESA) Aug 23, 2022

Data from two Mars missions have been used to create the first detailed global map of hydrated mineral deposits on Mars. These minerals are predominately clays and salts, and can be used to tell the history of water in the planet's various regions. For the most part, the clays were created on Mars during its early wet period, whereas many of the salts that are still visible today were produced as the water gradually dried up.

A new map of Mars is changing the way we think about the planet's watery past, and showing where we should land in the future.

The map shows mineral deposits across the planet and has been painstakingly created over the last decade using data from ESA's Mars Express Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) instrument and NASA's Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument.

Specifically, the map shows the locations and abundances of aqueous minerals. These are from rocks that have been chemically altered by the action of water in the past, and have typically been transformed into clays and salts.

On Earth, clays form when water interacts with rocks, with different conditions giving rise to different types of clays. For example, clay minerals such as smectite and vermiculite form when relatively small amounts of water interact with the rock and so retain mostly the same chemical elements as the original volcanic rocks. In the case of smectite and vermiculite those elements are iron and magnesium. When the amount of water is relatively high, the rocks can be altered more. Soluble elements tend to be carried away leaving behind aluminium-rich clays such as kaolin.

The big surprise is the prevalence of these minerals. Ten years ago, planetary scientists knew of around 1000 outcrops on Mars. This made them interesting as geological oddities. However, the new map has reversed the situation, revealing hundreds of thousands of such areas in the oldest parts of the planet.

"This work has now established that when you are studying the ancient terrains in detail, not seeing these minerals is actually the oddity," says John Carter, Institut d'Astrophysique Spatiale (IAS) and Laboratoire d'Astrophysique de Marseille (LAM), Universite Paris-Saclay and Aix Marseille Universite, France.

This is a paradigm shift for our understanding of the red planet's history. From the smaller number of aqueous minerals that we previously knew were present, it was possible that water was limited in its extent and duration. Now, there can be no doubt that water played a huge role in shaping the geology all around the planet.

Now, the big question is whether the water was persistent or confined to shorter, more intense episodes. While not yet providing a definitive answer, the new results certainly give researchers a better tool for pursuing the answer.

"I think we have collectively oversimplified Mars," says John. He explains that planetary scientists have tended to think that only a few types of clays minerals on Mars were created during its wet period, then as the water gradually dried up, salts were produced across the planet.

This new map shows that it's more complicated than previously thought. While many of the Martian salts probably did form later than the clays, the map shows many exceptions where there is intimate mixing of salts and clays, and some salts that are presumed to be older than some clays.

"The evolution from lots of water to no water is not as clear cut as we thought, the water didn't just stop overnight. We see a huge diversity of geological contexts, so that no one process or simple timeline can explain the evolution of the mineralogy of Mars. That's the first result of our study. The second is that if you exclude life processes on Earth, Mars exhibits a diversity of mineralogy in geological settings just as Earth does," he says.

In other words, the closer we look, the more complex Mars's past becomes.

The OMEGA and CRISM instruments are ideally suited to this survey. Their datasets are highly complementary, working over the same wavelength range, and sensitive to the same minerals. CRISM uniquely provides high resolution spectral imaging of the surface (down to 15m/pixel) for highly localized patches of Mars, and makes it the most suitable for mapping small regions of interests, such as rover landing sites. For example, the mapping shows that Jezero crater where NASA's 2020 Perseverance rover is currently exploring, displays a rich variety of hydrated minerals.

OMEGA, on the other hand, provides global coverage of Mars at higher spectral resolution and with a better signal-to-noise ratio. This makes it better suited for global and regional mapping, and discriminating between the different alteration minerals.

The results are presented in a pair of papers, written by John, Lucie Riu and colleagues. Lucie was at the Institute of Space and Astronautical Science (ISAS), Japanese Aerospace eXploration Agency (JAXA), Sagamihara, Japan, when part of the work was performed but is now an ESA Research Fellow at ESA's European Space Astronomy Centre (ESAC) in Madrid.

With the basic detections in hand, Lucie decided to take the next step and quantify the amounts of the minerals that were present. "If we know where, and in which percentage each mineral is present, it gives us a better idea of how those minerals could have been formed," she says.

This work also gives mission planners some great candidates for future landing sites - for two reasons. Firstly, the aqueous minerals still contain water molecules. Together with known locations of buried water-ice, this provides possible locations for extracting water for In-situ Resource Utilisation, key to the establishment of human bases on Mars. Clays and salts are also common building material on Earth.

Secondly, even before humans go to Mars, the aqueous minerals provide fantastic locations in which to perform science. As part of this mineral mapping campaign, the clay-rich site of Oxia Planum was discovered. These ancient clays include the iron and magnesium rich minerals of smectite and vermiculite. Not only can they help unlock the planet's past climate, but they are perfect sites to investigate whether life once began on Mars. As such, Oxia Planum was proposed and finally selected as the landing site for ESA's Rosalind Franklin rover.

"This is what I am interested in, and I think this kind of mapping work will help open up those studies going forward," says Lucie.

As ever when dealing with the Mars, the more we learn about the planet, the more fascinating it becomes.

Research Report:A Mars Orbital Catalog of Aqueous Alteration Signatures

Research Report:The M3 project: 3 - Global abundance distribution of hydrated silicates at Mars


Related Links
Mars Express at ESA
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Surprise, surprise: Subsurface water on Mars defy expectations
San Diego CA (SPX) Aug 11, 2022
A new analysis of seismic data from NASA's Mars InSight mission has revealed a couple of surprises. The first surprise: the top 300 meters of the subsurface beneath the landing site near the Martian equator contains little or no ice. "We find that Mars' crust is weak and porous. The sediments are not well-cemented. And there's no ice or not much ice filling the pore spaces," said geophysicist Vashan Wright of Scripps Institution of Oceanography at the University of California San Diego. Wrig ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
A special Moon snap

Terran Orbital delivers LunIR to Cape Canaveral for Artemis 1 launch

NASA engineer develops tiny, high-powered laser to find water on the Moon

'Long time coming': NASA 'a go' for launch of Artemis test mission to moon

MARSDAILY
China conducts spaceplane flight test

103rd successful rocket launch breaks record

Chinese space-tracking ship docks at Sri Lanka's Hambantota port

Shenzhou XIV astronauts to conduct their first spacewalk in coming days

MARSDAILY
Madrid meteor's cometary origins unearthed

Dust grains older than our sun found in Asteroid Ryugu samples

NASA's Lucy team discovers moon around asteroid Polymele

Space mission shows Earth's water may be from asteroids

MARSDAILY
Uranus to begin reversing path across the night sky on Wednesday

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Underwater snow gives clues about Europa's icy shell

Why Jupiter doesn't have rings like Saturn

MARSDAILY
Lowell Observatory points telescopes at Saturn during closest annual approach

SwRI researcher shows how elliptical craters could shed light on age of Saturn's moons

MARSDAILY
Launch Schedule for 3rd StriX-1 SAR satellite

Hungary sacks weather service chief over inaccurate forecasts

The Lacuna Space water monitoring system

Landsat 9 operations to transition from NASA to US Geological Survey

MARSDAILY
Russian spacewalk cut short due to issue with suit

US should end ISS collaboration with Russia

Boeing eyes February for space capsule's first crewed flight

45 years after launch, NASA's Voyager probes still blazing trails billions of miles away

MARSDAILY
New study examines how many moons an earth-mass planet could host

Webb telescope finds CO2 for first time in exoplanet atmosphere

Breaking in a new planet

Case solved: missing carbon monoxide was hiding in the ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.