Mars Exploration News  
New Technique Puts Brain-Imaging Research On Its Head

Skull acceleration.

St Louis MO (SPX) Dec 09, 2005
It's a scene football fans will see over and over during the bowl and NFL playoff seasons: a player, often the quarterback, being slammed to the ground and hitting the back of his head on the landing.

Sure, it hurts, but what happens to the inside of the skull? Researchers and doctors long have relied upon crude approximations made from test dummy crashes or mathematical models that infer � rather loosely � what happens to the brain during traumatic brain injury or concussion.

But the truth is that the state of the art in understanding brain deformation after impact is rather crude and uncertain because such methods don't give any true picture of what happens. Now, mechanical engineers at Washington University in St. Louis and collaborators have devised a technique on humans that for the first time shows just what the brain does when the skull accelerates.

What they've done is use a technique originally developed to measure cardiac deformation to image deformation in human subjects during repeated mild head decelerations. Picture, if you will, a mangled quarterback's occipital bone banging the ground, then rebounding. The researchers have mimicked that very motion with humans on a far milder, gentler, smaller scale and captured the movement inside the brain by magnetic resonance imaging (MRI).

Philip Bayly, Ph.D., Lilyan and E. Lisle Hughes Professor in Engineering, Guy Genin, Ph.D., assistant professor of mechanical engineering, and Eric Leuthardt, MD, a Washington University neurosurgeon, tested seven subjects in an MRI and gathered data that show that the brain, connected to the skull by numerous vessels, membranes and nerves at the base, tries to pull away from all those attachments, leading to a significant deformation of the front of the brain. Bayly discussed the group's findings Nov. 10, 2005, at the annual meeting of the National Neurotrauma Society in Washington, DC.

Brain movie

According to Genin, the subjects are placed in the soft netting of a head guide, and are asked to raise and lower their heads about an inch inside an MRI machine. The process is repeated several times as the MRI pieces together a complete movie of the brain's response to these skull motions.

"Phil (Bayly) has developed a set of state-of-the-art hardware and software to synchronize and analyze all of these measurements," said Genin. "The systems he has developed will allow us to explore a broad range of questions critical to understanding mild traumatic brain injury."

"It's an interesting thing that in many occipital impact injuries, people often find the greatest injury in the front of the brain," Bayly said. "That has been a puzzle for a long time and there have been numerous different explanations for it. What we see with the MRI is quite a bit of mechanical deformation in the front of the brain when the skull is hit from the rear. It seems to be because the brain is trying to pull away from some constraints in the front of the brain."

Bayly and his collaborators can apply the levels of deformation they have found with their subjects to in vitro experiments or to animal models to learn even more about brain matter deformation. They have done experiments on humans with the head dropping forward, and plan to study different acceleration profiles, including rotations.

"This method is a starting point that we hope will take the guesswork out of brain matter deformation analysis," Bayly said. "We can now quantify brain deformation from these very low, mild accelerations with MRI. We are working with Washington University School of Medicine faculty in hopes of some day developing therapeutic remedies for traumatic brain injuries and concussions.

"The most immediate application of our data will be in the development and validation of computer simulations of traumatic brain injury, which may ultimately reduce the need for direct experimentation."

Bayly and Genin are collaborating with David Brody, MD, Ph.D., instructor in neurology at the Washington University School of Medicine, and Sheng K. Song, Ph.D., assistant professor of radiology, on other advanced MRI techniques with the hope of finding noninvasive ways to detect and characterize brain injuries.

Community
Email This Article
Comment On This Article

Related Links
Washington University in St. Louis
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
All About Human Beings and How We Got To Be Here



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


New Maps Reveal True Extent Of Human Footprint On Earth
San Francisco CA (SPX) Dec 06, 2005
As global populations swell, farmers are cultivating more and more land in a desperate bid to keep pace with the ever-intensifying needs of humans.









  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • Chinese Lunar Land Sale A Great Idea But Illegal Says Government
  • India Awaits Approval For Chandrayan Lunar Mission
  • Russian Technologies Can Put Cosmonauts On Moon
  • Apollo 2 Will Take Real Money To Emulate The Original

  • Europe Keen To Join Russia In New Spaceship Project: Officials
  • Arianespace Thanks ESA Member States For Setting New Space Milestones
  • After 60 Days In Bed It Surely Is Time To Get Up
  • European Ministers Deliberate On Plan For Discovery And Competitiveness

  • A Historic Space Mission To the Third Zone Nears Launch
  • NASA Prepares To Launch First Probe To The Kuiper Belt
  • New Horizons Launch Preparations Move Ahead
  • Free Lectures On Exploring Pluto Coming Up At Pasadena City College

  • University Of Alberta Scientist Offers Clues To Windy Jupiter
  • Jupiter's Massive Winds Likely Generated From Deep Inside Its Interior
  • Organised Wind Chaos On Jupiter
  • Computer Simulation Suggests Mechanisms The Drive Jovian Jet Streams

  • Shadows Of Venus
  • Earth-Moon Observations From Venus Express

  • Huygens Finds A Hostile World On Titan
  • Cassini Images Reveal Spectacular Evidence Of An Active Moon
  • Rivers On Titan, One Of Saturn's Moons, Resemble Those On Earth
  • Bright Highlands And Dark Plains

  • ESO Signs Contract To Supply Antennas For Ground Based ALMA Project
  • Telkonet Acquires Microwave Satellite Technologies
  • Better Body Armor Expected From New Georgia Tech Materials Process
  • Conexant's Satellite System Solution Powers New Humax Set-Top Box

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement