Mars Exploration News  
MARSDAILY
Mounds of ice in craters give new insight into Mars' past climate
by Staff Writers
West Lafayette IN (SPX) Mar 30, 2022

Layered ice in Burroughs crater on Mars, with imagery from THEMIS (left) and HiRISE (right panels). The ice layers here record climate oscillations now linked precisely to changes in Mars' orbit and tilt, according to a new study in the AGU journal Geophysical Research Letters.

Newly discovered deposits of layered ice in craters scattered around Mars' southern hemisphere provide insights into how the planet's orientation controlled the planet's climate over the past 4 million years, according to a new study. The findings help scientists understand what controlled Mars' past climate, which is essential for predicting when the planet could have been habitable.

The study was published in the AGU journal Geophysical Research Letters, which publishes short-format, high-impact research with implications spanning the Earth and space sciences.

Ice deposits on Mars reflect a combination of temperature, hydrology and planetary dynamics, as they do on Earth. The planet's tilt and orbit impact temperature and sunlight on the surface, which contribute to climate. Thicker, more pure ice layers generally reflect cold periods with more ice accumulation, while thin, dusty layers were likely warmer and less able to build up ice.

The new study matches these ice layers to the tilt of Mars' axis and its orbital precession, or how the planet's elliptical orbit rotates around the sun over time, with unprecedented resolution and confidence.

The findings give scientists insight into how Mars' climate has changed over time. While the study is limited to the recent past, establishing these climate-orbit relationships helps scientists understand Martian climate deeper in the past, which could help pinpoint periods of potential habitability.

"It was unexpected how cleanly those patterns matched to the orbital cycles," said lead study author Michael Sori, a planetary scientist at Purdue University. "It was just such a perfect match, as good as you can ask for."

From caps to craters
Previously, Martian climate scientists have focused on polar ice caps, which span hundreds of kilometers. But these deposits are old and may have lost ice over time, losing fine details that are necessary to confidently establish connections between the planet's orientation and motion and its climate.

Sori and his colleagues turned to ice mounds in craters, just tens of kilometers wide but much fresher and potentially less complicated. After scouring much of the southern hemisphere, they pinpointed Burroughs crater, 74 kilometers wide, that has "exceptionally well-preserved" layers visible from NASA HiRISE imagery, Sori said.

The researchers analyzed the layers' thicknesses and shapes and found they had strikingly similar patterns to two important Martian orbital dynamics, the tilt of Mars' axis and orbital precession, over the last 4 to 5 million years.

The findings improve on previous research, which used Mars' polar ice records of climate to establish tentative connections to orbit. But those records were too "noisy," or complicated, to confidently connect the two. Younger, cleaner crater ice preserves less complicated climate records, which the researchers used to match climate changes to orbital precession and tilt with a high level of precision.

Mars as a natural lab
Discerning the connections between orbital cycles and climate is important for understanding both Martian history and complex climate dynamics on Earth. "Mars is a natural laboratory for studying orbital controls on climate," Sori said, because many of the complicating factors that exist on Earth - biology, tectonics - are negligible on Mars. The whole planet, in essence, isolates the variable for scientists.

"If we're ever going to understand climate, we need to go to places that don't have these interfering factors," said Isaac Smith, a planetary scientist at the Planetary Science Institute and York University who was not involved in the study. In that sense, "Mars is a pristine planet. And there are a lot of potential applications here. Mars has a lot more in common with Pluto and Triton than you think."

Not all smaller ice deposits have clean, exposed layers at their surface. Some might be hidden inside the mounds. Eventually, Sori said, the goal is to sample ice cores like scientists do on Earth, but Mars rovers don't have that capability yet. Instead, scientists can use ground-penetrating radar data to "peer inside" the ice and check for layers, making sure visible layers extend throughout the deposit. It's a necessary quality-control step in the present study, and the method may help future explorations of Martian ice without layers visible at the surface.

"Being able to pull a climate signal from a small ice deposit is a really cool result," said Riley McGlasson, a study co-author from Purdue University who applied this method in the new study. "With radar, we can get closer to the full story. That's why I'm excited to take this a step further in the future."

Research Report: "Orbital forcing of Martian climate revealed in a south polar outlier ice deposit"


Related Links
Purdue University
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
How Mars lost its oceans
Tokyo, Japan (SPX) Feb 09, 2022
It has long been known that Mars once had oceans due in part to a protective magnetic field similar to Earth's. However, the magnetic field disappeared, and new research may finally be able to explain why. Researchers recreated conditions expected in the core of Mars billions of years ago and found that the behavior of the molten metal thought to be present likely gave rise to a brief magnetic field that was destined to fade away. Whether it's because of science fiction or the fact that you can se ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
ESA supports Indian lunar and solar missions

Satellites around the Moon come another step closer

Koons on the Moon -- sculptures to be placed on lunar surface

Winning rovers of lunar polar challenge

MARSDAILY
Tianzhou 2 re-enters Earth's atmosphere, mostly burns up

Shenzhou XIII astronauts prep for return

China's Tianzhou-2 cargo craft leaves space station core module

China's space station to support large-scale scientific research

MARSDAILY
Studying impact craters to uncover the secrets of the solar system

Characteristics of Apophis, the asteroid that will approach Earth in 2029

Ryugu be a remnant of an extinct comet

Fifth asteroid ever discovered before impact

MARSDAILY
Juice's journey and Jupiter system tour

Pluto's giant ice volcanos may have formed from multiple eruption events

Chaos terrains on Europa could be shuttling oxygen to ocean

Searching for Planet Nine

MARSDAILY
On icy moon Enceladus, expansion cracks let inner ocean boil out

Saturn's High-Altitude Winds Generate Extraordinary Aurorae, Study Finds

SwRI scientist uncovers evidence for an internal ocean in small Saturn moon

MARSDAILY
Planet-scale MRI

German satellite EnMAP launches successfully

Ozone may be heating the planet more than we realise

Momentus' Vigoride vehicle completes thermal vacuum testing

MARSDAILY
Roscosmos to Brief Russian Government on Options for Ending ISS Cooperation Soon, Rogozin Says

Russian space agency suspends ISS cooperation over sanctions

Winning technologies benefit NASA and Industry

Blue Origin launches 4th crew to space

MARSDAILY
Kepler telescope delivers new planetary discovery from the grave

Miniaturized laser systems to seek out traces of life in space

NASA simulator helps to shed light on mysteries of Solar System

Could a refined space weather model help scientists find life elsewhere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.