![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Austin TX (SPX) May 23, 2019
Newly discovered layers of ice buried a mile beneath Mars' north pole are the remnants of ancient polar ice sheets and could be one of the largest water reservoirs on the planet, according to scientists at The University of Texas at Austin and the University of Arizona. The team made the discovery using measurements gathered by the Shallow Radar (SHARAD) on NASA's Mars Reconnaissance Orbiter (MRO). SHARAD emits radar waves that can penetrate up to a mile and a half beneath the surface of Mars. The findings, published May 22 in Geophysical Research Letters, are important because the layers of ice are a record of past climate on Mars in much the same way that tree rings are a record of past climate on Earth. Studying the geometry and composition of these layers could tell scientists whether climate conditions were previously favorable for life, researchers said. The team found layers of sand and ice that were as much as 90% water in some places. If melted, the newly discovered polar ice would be equivalent to a global layer of water around Mars at least 1.5 meters (5 feet) deep. "We didn't expect to find this much water ice here," said lead author Stefano Nerozzi, a graduate research assistant at the University of Texas Institute for Geophysics (UTIG) who is completing his Ph.D. at the Jackson School of Geosciences. "That likely makes it the third largest water reservoir on Mars after the polar ice caps." The findings were corroborated by an independent study using gravity data instead of radar, led by researchers at Johns Hopkins University. Nerozzi was a co-author. The papers have been published simultaneously in Geophysical Research Letters. The authors think that the layers formed when ice accumulated at the poles during past ice ages on Mars. Each time the planet warmed, a remnant of the ice caps became covered by sand, which protected the ice from solar radiation and prevented it from dissipating into the atmosphere. Scientists have long known about glacial events on Mars, which are driven by variations in the planet's orbit and tilt. Over periods of about 50,000 years, Mars leans toward the sun before gradually returning to an upright position, like a wobbling spinning top. When the planet spins upright, the equator faces the sun, allowing the polar ice caps to grow. As the planet tilts, the ice caps retreat, perhaps vanishing entirely. Until now, scientists thought that the ancient ice caps were lost. The paper shows that in fact significant ice sheet remnants have survived under the planet's surface, trapped in alternating bands of ice and sand, like layers on a cake. Co-author Jack Holt, a professor at the Lunar and Planetary Laboratory of the University of Arizona, said that the study provides new, important insights into the exchange of water ice between the poles and the midlatitudes, where his research group previously confirmed the presence of widespread glaciers, also using the SHARAD instrument. "Surprisingly, the total volume of water locked up in these buried polar deposits is roughly the same as all the water ice known to exist in glaciers and buried ice layers at lower latitudes on Mars, and they are approximately the same age," he said. Holt, who was a UTIG scientist and research professor for 19 years before joining the University of Arizona in 2018, has been a co-investigator with SHARAD since the spacecraft arrived at Mars in 2006. Nerozzi said that studying this record of past polar glaciation could help determine whether Mars was ever habitable. "Understanding how much water was available globally versus what's trapped in the poles is important if you're going to have liquid water on Mars," Nerozzi said. "You can have all the right conditions for life, but if most of the water is locked up at the poles, then it becomes difficult to have sufficient amounts of liquid water near the equator."
![]() ![]() How the Sun pumps out water from Mars into space Moscow, Russia (SPX) May 15, 2019 Russian and German physicists have offered an explanation for the new data obtained by Martian satellites, capturing the "escape" of hydrogen atoms from the upper Martian atmosphere into outer space. The developed model fits well with the observations and explains a number of puzzling phenomena related to the atmosphere of Mars. The research was published in the journal Geographical Research Letters. The atmosphere of Mars is cold and rarefied, like the Earth atmosphere at high altitudes. Under su ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |