Mars Exploration News  
MARSDAILY
Mars: we may have solved the mystery of how its landslides form
by Giulia Magnarini Tom Mitchell for The Conversation
London, UK (The Conversation) Dec 11, 2019

Cerberus Fossae, with steep slopes having active landslides. NASA

Some landslides on Mars seem to defy an important law of physics. "Long, runout landslides" are formed by huge volumes of rock and soil moving downslope, largely due to the force of gravity. But their power is hard to account for. With volumes exceeding that of the Empire State Building, they move at high speeds of up to 360 kilometres per hour over flat surfaces for up to tens of kilometres.

This seems to indicate that there is no or very little friction present. Friction is the fundamental physical force resisting motion of one surface sliding relative to another. The lack of friction in these long landslides - compared to normal, shorter ones - is comparable to suddenly losing traction when driving a car on a wet or icy surface: you pull the breaks, but you stop well beyond where you intended.

To explain this conundrum, scientists have suggested that these landslides must have taken place at a time when the area was covered in ice. But in our recent paper, published in Nature Communications, we have come up with another answer. The results could help us protect against harmful landslides - both on Mars and on Earth.

Geologists have discussed the odd behaviour of martian landslides since they were first identified nearly half a century ago. These types of landslides have occurred on Earth in its geological history too, but because our planet is active with erosion, atmospheric weathering (wind, rain and so on), vegetation cover and plate tectonics, their evidence can be masked if not completely erased.

This is the reason why we study long, runout landslides on other planets in our solar system. There are in fact a number of advantages of doing so. On the red planet, landslides and their morphological features are well preserved for millions of years because of the reduced erosion rate and absence of vegetation and plate tectonics.

We now also have available satellite images of the surface of Mars with a resolution that is better than what we have for some regions here on Earth. As a result, we can conduct observations and measurements that are not so granted on our planet.

New findings
Valles Marineris on Mars is a 4,000km long, straight canyon, as deep as 8km. It is situated just south of the martian equator, where extraordinary examples of long, runout landslides are present. In our study, we focused on one of the best-preserved landslides - with a size similar to the entire State of Rhode Island in the US.

The landslide shows long ridges that extend in the direction of the movement for almost the entire length of the deposit. As mentioned, these ridges have previously been interpreted to be a result of underlying ice at the time of the landslide. This hypothesis is supported by the fact that similar structures have been observed on terrestrial landslides on glaciers.

Based on this similarity, the presence of the ridges on martian landslides have been used in support of the theory that Mars was once covered in ice. But the presence of glaciers and their timing at such martian latitude is hotly debated. What's more, it is still unclear which exact mechanisms created these ridges during the ice age.

To investigate whether there may be other explanations, we made computer models of the landslide called "digital elevation" models. These are 3D representations of terrain, obtained from high-resolution satellite images and the terrain's elevation data. From this data, we could calculate the thickness of the landslides, the length of the ridges, their height and their wavelength - that is the distance from crest to crest between two ridges next to each other.

We showed that the wavelength of the ridges is constantly two to three times the value of the thickness of the landslide. This relationship has previously only been demonstrated in laboratory experiments - which do not involve ice - and our result is the first field evidence.

This suggests that ice is not a necessary condition for the formation of the long ridges. Instead, we propose that the ridges could have formed at high speeds due to underlying layers of unstable, light rocks. These layers would have been created by vibrations and collisions of rock particles at the bottom of the slide with the rough surface of the valley. This would have initiated a "convection process" - transfer of heat by movement - that caused upper denser and heavier layers of rock to fall and lighter rocks to rise.

Once we had accounted for this mechanical instability - and coupled it with the movement at phenomenal high speed of the slide - we could show that vortices extending in the direction of the landslide's movement were generated, giving rise to the long ridges that we observe on the surface of the landslide.

The findings are important. On Earth, the incomplete record of such catastrophic events can lead to misinterpretations and overlooking of the hazard of these landslides. But, as they happened in the past, they will happen in the future, posing great risk to infrastructures and people lives.

Turning our look further away to understand what is near us is sometimes a fundamental change of perspective. But, as we know landslides are also still happening on Mars, these studies will set the background knowledge for risk mitigation of human settlements on Mars, no matter how far in the future they are still.


Related Links
Mars News
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
InSight 'hears' peculiar sounds on Mars
Pasadena CA (JPL) Oct 02, 2019
Put an ear to the ground on Mars and you'll be rewarded with a symphony of sounds. Granted, you'll need superhuman hearing, but NASA's InSight lander comes equipped with a very special "ear." The spacecraft's exquisitely sensitive seismometer, called the Seismic Experiment for Interior Structure (SEIS), can pick up vibrations as subtle as a breeze. The instrument was provided by the French space agency, Centre National d'Etudes Spatiales (CNES), and its partners. SEIS was designed to listen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
China's lunar rover travels over 345 meters on moon's far side

India's Vikram lunar lander found in LRO images

NASA finds Indian Moon lander with help of amateur space enthusiast

NASA Shares Mid-Sized Robotic Lunar Lander Concept with Industry

MARSDAILY
China sends six satellites into orbit with single rocket

China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

MARSDAILY
KinetX team helps in understanding particles ejected from the surface of Asteroid Bennu

OSIRIS-REx mission explains Bennu's mysterious particle events

NASA's OSIRIS-REx in the midst of site selection

TESS catches a natural comet outburst in unprecedented detail

MARSDAILY
The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice

NASA scientists confirm water vapor on Europa

MARSDAILY
How Enceladus got its stripes

A study of Saturn's largest moon may offer insights for earth

The first global geologic map of Titan completed

Numerous polar storms on Saturn analyzed by the UPV/EHU's Planetary Sciences Group

MARSDAILY
Green light for BRICS satellite amid space arms race fears

China launches new optical remote sensing satellite

How saving the ozone layer in 1987 slowed global warming

SubX shows promise for improved monthly weather forecasts

MARSDAILY
Novel camera gives scientists "Night Vision" from ISS

AFRL technology set for launch to International Space Station

SpaceX launches 19th cargo mission to space station with robot aboard

Russian cargo ship docks at International Space Station

MARSDAILY
Exoplanet axis study boosts hopes of complex life, just not next door

Hidden giant planet around tiny white dwarf star

Scientists figure out how accumulating dust particles become planets

How planets may form after dust sticks together









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.