Mars Exploration News  
MARSDAILY
Mars Rover Scientist Hopes to Find More Evidence of Liquid Water on the Red Planet
by Tomasz Nowakowski for AstroWatch
Los Angeles CA (SPX) May 19, 2016


These dark, narrow, 100 meter-long streaks called recurring slope lineae flowing downhill on Mars are inferred to have been formed by contemporary flowing water. Recently, planetary scientists detected hydrated salts on these slopes at Hale crater, corroborating their original hypothesis that the streaks are indeed formed by liquid water. The blue color seen upslope of the dark streaks are thought not to be related to their formation, but instead are from the presence of the mineral pyroxene. Image courtesy NASA/JPL/University of Arizona.

Although the existence of liquid water on the Red Planet was confirmed by NASA's Mars Reconnaissance Orbiter (MRO) last year, the scientific community is gearing up for a more thorough analysis of the topic that could be provided by the Curiosity rover, studying the Martian surface in-situ. Raina Gough of the University of Colorado Boulder, a chemist in the Curiosity rover's research team, hopes to discover more evidence of liquid water by investigating chemical processes like deliquescence, found to occur also on Mars.

Deliquescence is a process in which salts absorb water vapor from the atmosphere and form a liquid solution. This could create briny liquids under conditions likely to exist, in certain times and places, on Mars' surface.

"I will be performing laboratory experiments in which I study the deliquescence, as well as the reverse process, recrystallization, under low temperatures. This will allow the determination of the conditions under which water on Mars may exist in the liquid brine phase," Gough told Astrowatch.net.

A particle deliquesces by absorbing water vapor from the atmosphere when a threshold relative humidity value is reached. This deliquescence relative humidity (DRH) varies with salt composition as well as temperature. The reverse process, the recrystallization of a salt solution into the solid phase, is called efflorescence and occurs at the efflorescence relative humidity (ERH).

The scientists will us a laser-based microscopic device called the 'Raman microscope' to determine the DRH and ERH values of Mars relevant salts and salt mixtures under a range of low temperature conditions. As Gough noted, knowledge of these values is necessary to predict when and where aqueous salt solutions could exist on the surface of Mars.

"In combination with the Rover Environmental Monitoring Station (REMS) data, this may enable prediction of when and where a brine may exist at the landing site. This information can be utilized to guide the Dynamic Albedo of Neutrons (DAN), Sample Analysis at Mars (SAM) and maybe ChemCam analytical strategies to possibly detect or constrain the presence and duration of small amounts of liquid water in Gale Crater," Gough said.

REMS instrument onboard Curiosity provides daily and seasonal reports on atmospheric pressure, humidity, ultraviolet radiation at the Martian surface, wind speed and direction, air temperature, and ground temperature around the rover. DAN is a pulsing neutron generator sensitive enough to detect water content as low as one-tenth of one percent and resolve layers of water and ice beneath the surface.

SAM is capable of detecting organic compounds like methane and also light elements, such as hydrogen, oxygen, and nitrogen, associated with life. These instruments are complemented by ChemCam that fires a laser and analyzes the elemental composition of vaporized materials - recognizing ice and minerals with water molecules in their crystal structures.

Gough will try to determine how the salts present on Mars and at Gale Crater in particular may facilitate the formation and stability of liquid brines due to deliquescence.

"Perchlorate salts are very deliquescent, even at low temperatures! The amount of liquid water formed may be small, because there is not very much water vapor in the atmosphere, but the presence of any liquid water would be very interesting for many reasons and applications like habitability, understanding the hydrological cycle and maybe even human exploration," Gough explained.

Perchlorates have previously been seen on Mars. NASA's Phoenix lander and Curiosity rover both found them in the planet's soil, and some scientists believe that the Viking missions in the 1970s measured signatures of these salts.

The study of Martian downhill flows, known as recurring slope lineae (RSL) was conducted in 2015. It detected perchlorates, in hydrated form, in different areas than those explored by the landers. This was also the first time perchlorates have been identified from orbit. Now the scientists hope for new findings from the instruments on the ground.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astro Watch
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MARSDAILY
The rise and fall of Martian lakes
Paris (ESA) May 16, 2016
There is a wealth of evidence, collected over the past few decades, that suggests liquid water was abundant in the early history of Mars - one of our nearest and most studied neighbours. However, the size, evolution and duration of standing bodies of water, such as lakes, on Mars' surface are still a matter of great debate. A recent study, using data from several spacecraft operating at Mars, pa ... read more


MARSDAILY
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

MARSDAILY
China, U.S. hold first dialogue on outer space safety

Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

MARSDAILY
ISS completes 100,000th orbit of Earth: mission control

Canadian astronaut to join ISS in 2018

NASA, Space Station partners announce future mission crew members

New landing date for ESA astronaut Tim Peake

MARSDAILY
Hints of wandering planets in distant cometary belt

Dwarf Planet Haumea's Lunar System Smaller than Anticipated

Andre Brahic, discoverer of Neptune's rings, dies aged 73

Largest unnamed world in the solar system 2007 OR10

MARSDAILY
The hard knock life of Saturn's Epimetheus

Enceladus jets: surprises in starlight

Discovering the bath scum on Titan

Profile of a methane sea on Titan

MARSDAILY
Astrosat welcomes the Copernicus Masters Challenge

China Launches Yaogan-30 Remote Sensing Satellite

From petabytes to pictures

Earth's magnetic heartbeat

MARSDAILY
Interns Make Archived NASA Planetary Science Data More Accessible

Out of this world: 'Moon and Mars veggies' grow in Dutch greenhouse

NASA Invests in Next Stage of Visionary Technology Development

NASA makes dozens of patents available in public domain

MARSDAILY
Star Has Four Mini-Neptunes Orbiting in Lock Step

Exoplanets' Orbits Point to Planetary Migration

Synchronized planets reveal clues to planet formation

Kepler space telescope finds another 1284 exo planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.