Mars Exploration News  
MARSDAILY
How long can microorganisms live on Mars
by Staff Writers
Moscow, Russia (SPX) Nov 09, 2017


Rover tracks on Mars.

Researchers from Lomonosov MSU, Faculty of Soil Science, have studied the resistance microorganisms have against gamma radiation in very low temperatures. The results have been published in the Extremophiles journal.

Average temperature on Mars is -63C, but in polar areas and at night it can be as low as -145C. There is pressure lower 100-1000 times than on the Earth, strong ultraviolet and ionizing radiation. Until now, no one knew to what extent microorganisms can resist such extreme factors.

By finding out the limits, scientists can assess the possibility of microorganisms and biomarkers surviving in various objects inside the Solar System. This information will become invaluable in planning astrobiological space missions, when it is important to carefully choose objects and regions of research, as well as thoroughly develop techniques for the detection of life.

In their current paper, the authors studied the radiation resistance of microbial communities in permafrost sedimentary rocks under low temperature and low pressure. These sedimentary rocks are considered to be a terrestrial analog of regolith, the ground left after space weathering.

The scientists assume that the potential Martian biosphere could survive in cryoconservated state, and that the main factor limiting its lifespan is the cells obtaining radiation damage. By defining the limit of their radiation resistance, one can estimate the length of microorganisms surviving in the regolith of various depths.

"We have studied the joint impact of a number of physical factors (gamma radiation, low pressure, low temperature) on the microbial communities within ancient Arctic permafrost. We also studied a unique nature-made object - the ancient permafrost which has not melted for about two million years. In a nutshell, we have conducted a simulation experiment that well covered the conditions of cryoconservation in Martian regolith.

It is also important that in this paper we studied the effect of high doses (100 kGy) of gamma radiation on prokaryotes' vitality, while in previous studies no living prokaryotes were ever found after doses higher than 80 kGy", - one of the authors, Vladimir S. Cheptsov, a post-graduate student at the Lomonosov MSU Faculty of Soil Science, Department of Soil Biology, told us.

While simulating these factors influencing the microorganisms, the researchers used an original constant climate chamber that allows maintaining low temperature and pressure during gamma-irradiation. Authors also note that natural microbial communities were used as a model object, not pure cultures of microorganisms.

The microbial communities studied have shown high resistance to the conditions of simulated Martian environment. After irradiation the total count of prokaryotic cells and number of metabolically active bacterial cells remained at the control level, while the number of cultured bacteria (those which grow on nutrient media) decreased ten times, and the number of metabolically active cells of archaea decreased threefold. The decrease in the cultured bacteria numbers was caused probably by a change in their physiological state, and not by death.

The scientists have detected a fairly high biodiversity of bacteria in the exposed sample of permafrost, although the microbial community structure underwent significant changes after irradiation. In particular, actinobacteria populations of the genus Arthrobacter, which were not revealed in the control samples, became predominant in bacterial communities following the simulation.

This was probably caused by the decrease in dominant bacterial populations, so the actinobacteria of the genus Arthrobacter could be detected by the researchers. The authors also suggest that these bacteria are more resistant to the simulated conditions.

There were also studies which proved that these bacteria have a fairly high resistance to the ultraviolet radiation, and their DNA is well-preserved in ancient permafrost through millions of years.

"The results of the study indicate the possibility of prolonged cryoconservation of viable microorganisms in the Martian regolith. The intensity of ionizing radiation on the surface of Mars is 0.05-0.076 Gy/year and decreases with depth.

Taking into account the intensity of radiation in the Mars regolith, the data obtained by us makes it possible to assume that hypothetical Mars ecosystems could be conserved in anabiotic state in the surface layer of regolith (protected from UV rays) for at least 1.3-2 million years, at a depth of two meters for no less than 3.3 million years, and at a depth of five meters for at least 20 million years.

The data obtained can also be applied to assess the possibility of detecting viable microorganisms at other objects of the Solar System and within small bodies in outer space" - the scientist added.

The authors have for the first time proven that prokaryotes can survive irradiation with ionizing radiation in doses exceeding 80 kGy. The data obtained indicate both a possible underestimation of the radiation resistance of natural microbial communities and the need to study the joint effect of a set of extraterrestrial and cosmic factors on living organisms and biomolecules in astrobiological model experiments.

Research paper

MARSDAILY
Microbes leave 'fingerprints' on Martian rocks
University of Vienna
Vienna, Austria (SPX) Oct 18, 2017 At the Department of Biophysical Chemistry at the University of Vienna, Tetyana Milojevic and her team have been operating a miniaturized "Mars farm" in order to simulate ancient and probably extinct microbial life - based on gases and synthetically produced Martian regolith of diverse composition. The team investigates interactions between Metallosphaer ... read more

Related Links
Lomonosov Moscow State University
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
NASA Team Studies CubeSat Mission to Measure Water on the Moon

China and the US are both shooting for the moon

Russia locks up six for Moon flight simulation

Low-cost clocks for landing on the Moon

MARSDAILY
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

MARSDAILY
Dawn Explores Ceres' Interior Evolution

Site of asteroid impact changed the history of life

Unlucky dinosaurs: Scientists say asteroid had 13 percent chance of triggering extinction

Return of the Comet: 96P Spotted by ESA, NASA Satellites

MARSDAILY
Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Juno Aces 8th Science Pass of Jupiter, Names New Project Manager

MARSDAILY
Heating ocean moon Enceladus for billions of years

Powering Saturn's Active Ocean Moon

ASA Advances Instrument to Study the Plumes of Enceladus

Saturn's Radiation Belts: A Stranger to the Solar Wind

MARSDAILY
NASA CubeSat to Test Miniaturized Weather Satellite Technology

The changing colors of our Living Planet

Mapping functional diversity of forests with remote sensing

How ice in clouds is born

MARSDAILY
NASA Moves Up Critical Crew Safety Launch Abort Test

Brazil's tech junkies seek healing at digital detox clinic

NanoRacks launches Full External Cygnus Deployer on OA-8 to ISS

The road to Orion's launch

MARSDAILY
Astronomers See Moving Shadows Around Planet-Forming Star

Scientists find potential 'missing link' in chemistry that led to life on earth

18-Month Twinkle in a Forming Star Suggests a Very Young Planet

Overlooked Treasure: The First Evidence of Exoplanets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.