Mars Exploration News  
MARSDAILY
Icy clouds could have kept early Mars warm enough for rivers and lakes, study finds
by Staff Writers
Chicago IL (SPX) Apr 27, 2021

A cloudy day on Mars today is nothing like what it might been billions of years ago when rivers flowed and large bodies of water dominated the Martian surface.

One of the great mysteries of modern space science is neatly summed up by the view from NASA's Perseverance, which just landed on Mars: Today it's a desert planet, and yet the rover is sitting right next to an ancient river delta.

The apparent contradiction has puzzled scientists for decades, especially because at the same time that Mars had flowing rivers, it was getting less than a third as much sunshine as we enjoy today on Earth.

But a new study led by University of Chicago planetary scientist Edwin Kite, an assistant professor of geophysical sciences and an expert on climates of other worlds, uses a computer model to put forth a promising explanation: Mars could have had a thin layer of icy, high-altitude clouds that caused a greenhouse effect.

"There's been an embarrassing disconnect between our evidence, and our ability to explain it in terms of physics and chemistry," said Kite. "This hypothesis goes a long way toward closing that gap."

Of the multiple explanations scientists had previously put forward, none have ever quite worked. For example, some suggested that a collision from a huge asteroid could have released enough kinetic energy to warm the planet. But other calculations showed this effect would only last for a year or two - and the tracks of ancient rivers and lakes show that the warming likely persisted for at least hundreds of years.

Kite and his colleagues wanted to revisit an alternate explanation: High-altitude clouds, like cirrus on Earth. Even a small amount of clouds in the atmosphere can significantly raise a planet's temperature, a greenhouse effect similar to carbon dioxide in the atmosphere.

The idea had first been proposed in 2013, but it had largely been set aside because, Kite said, "It was argued that it would only work if the clouds had implausible properties." For example, the models suggested that water would have to linger for a long time in the atmosphere - much longer than it typically does on Earth - so the whole prospect seemed unlikely.

Using a 3D model of the entire planet's atmosphere, Kite and his team went to work. The missing piece, they found, was the amount of ice on the ground. If there was ice covering large portions of Mars, that would create surface humidity that favors low-altitude clouds, which aren't thought to warm planets very much (or can even cool them, because clouds reflect sunlight away from the planet.)

But if there are only patches of ice, such as at the poles and at the tops of mountains, the air on the ground becomes much drier. Those conditions favor a high layer of clouds - clouds that tend to warm planets more easily.

The model results showed that scientists may have to discard some crucial assumptions based on our own particular planet.

"In the model, these clouds behave in a very un-Earth-like way," said Kite. "Building models on Earth-based intuition just won't work, because this is not at all similar to Earth's water cycle, which moves water quickly between the atmosphere and the surface."

Here on Earth, where water covers almost three-quarters of the surface, water moves quickly and unevenly between ocean and atmosphere and land - moving in swirls and eddies that mean some places are mostly dry (the Sahara) and others are drenched (the Amazon). In contrast, even at the peak of its habitability, Mars had much less water on its surface. When water vapor winds up in the atmosphere, in Kite's model, it lingers.

"Our model suggests that once water moved into the early Martian atmosphere, it would stay there for quite a long time - closer to a year - and that creates the conditions for long-lived high-altitude clouds," said Kite.

NASA's newly landed Perseverance rover should be able to test this idea in multiple ways, too, such as by analyzing pebbles to reconstruct past atmospheric pressure on Mars.

Understanding the full story of how Mars gained and lost its warmth and atmosphere can help inform the search for other habitable worlds, the scientists said.

"Mars is important because it's the only planet we know of that had the ability to support life - and then lost it," Kite said. "Earth's long-term climate stability is remarkable. We want to understand all the ways in which a planet's long-term climate stability can break down - and all of the ways (not just Earth's way) that it can be maintained. This quest defines the new field of comparative planetary habitability."

Research Report: "Warm Early Mars surface enabled by high-altitude water ice clouds"


Related Links
University Of Chicago
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Can a new type of glacier on Mars aid future astronauts
New York NY (SPX) Apr 21, 2021
On April 21, 1908, near Earth's North Pole, the Arctic explorer Frederick Albert Cook scrawled in his diary a memorable phrase: "We were the only pulsating creatures in a dead world of ice." These words may soon take on new significance for humankind in another dead world of hidden ice, submerged beneath the red sand of its frigid deserts. This dead world is Mars, and the desert is the planet's mid-latitude region known as Arcadia Planitia. Shannon Hibbard is a Ph.D. candidate in geology and plane ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Blue Origin protests NASA choice of SpaceX to land astronauts on Moon

Apollo 11 astronaut Michael Collins dead at 90

Measuring the Moon's nano dust is no small matter

China, Russia welcome int'l partners in moon station cooperation

MARSDAILY
Mars mission team prepares for its toughest challenge

China launches space station core module Tianhe

Core capsule launched into orbit

China's space station takes shared future concept to space

MARSDAILY
Lessons learnt from simulated strike

New View of Asteroid Ryugu's Surface

New ESA telescope in South America to search for asteroids

Robotic spacecraft will fly to asteroid, comet

MARSDAILY
New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered

MARSDAILY
Ocean currents predicted on Enceladus

Hubble Sees Changing Seasons on Saturn

MARSDAILY
Spotting cows from space

China's Fengyun weather data freely available for EO applications

China launches Yaogan-34 remote sensing satellite

BlackSky Increases Capacity as Latest Satellite Enters Commercial Operations

MARSDAILY
Stone skipping techniques can improve reentry of space vehicles

Space tourism - 20 years in the making - is finally ready for launch

NASA astronaut paints a picture of success growing plants in space

Top Things to Know about Space Station Crew Handovers

MARSDAILY
Astronomers detect first ever hydroxyl molecule signature in an exoplanet atmosphere

NASA's Webb to study young exoplanets on the edge

When the atmosphere isn't enough

As different as day and night









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.