Mars Exploration News  
MARSDAILY
Hardware for Journey to Mars is a 'Big Catch'
by Tracy McMahan for MSFC News
Huntsville AL (SPX) Jun 24, 2016


Two cranes lift the interim cryogenic propulsion stage test article, built and delivered by United Launch Alliance in Decatur to NASA's Marshall Space Flight Center in Huntsville, Alabama. The ICPS test article joins other structural test articles and simulators that make up the upper portion of the SLS rocket. They will be stacked and tested later this year at Marshall. Image courtesy NASA/MSFC Image: Emmett Given. For a larger version of this image please go here.

A key piece of hardware for NASA's new rocket, the Space Launch System, completed a five-hour journey by barge June 19 along the Tennessee River in North Alabama. Fishermen may have caught a glimpse of it on its way from United Launch Alliance in Decatur, Alabama, to the agency's Marshall Space Flight Center in Huntsville, Alabama. SLS will be the most powerful rocket in the world and enable human missions to deep space, including the journey to Mars.

The transported hardware is a prototype of the interim cryogenic propulsion stage (ICPS), and will be a "big catch" for testing later this year. On the first flight of SLS with NASA's deep-space craft, the ICPS is the liquid oxygen/liquid hydrogen-based system that will give Orion the big, in-space push needed to fly beyond the moon before it returns to Earth.

The test version ICPS joins other structural test articles and simulators that make up the upper portion of the rocket. When all the hardware is completed, engineers will stack them together and move the 56-foot-tall structure to a test stand at Marshall.

"The delivery of this test hardware is critical to preparing for a big test series later this year," said Chris Calfee, ICPS project manager at Marshall, where the SLS Program is managed for NASA. "For that test series, we will subject the hardware to forces similar to those experienced in flight. This will ensure the hardware can handle the forces without compromising the structural integrity of each piece."

In addition to the ICPS, structural test articles have been completed for the:

Orion spacecraft simulator - a replica of the bottom portion of the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Orion stage adapter - connects the Orion to the ICPS. The adapter technology was used for Orion's first test flight in December 2014.

Core stage simulator - a duplicate of the top of the SLS core stage that is approximately 10 feet tall and 27 feet in diameter. The rocket's entire core stage will tower more than 200 feet tall and house the vehicle's avionics and software, and the flight computer. It also will store cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle's RS-25 engines.

A structural test article for the launch vehicle stage adapter (LVSA), which connects the core stage and the upper stage, has completed welding and is now being outfitted with hundreds of sensors to collect test data. Engineers also are continuing work on the logistics behind such a large test operation, including building handling equipment that will transport the hardware to the test stand. "Testing is probably the most important part of building a rocket," said Steve Creech, acting director of the Spacecraft and Payload Integration and Evolution Office at Marshall.

"We look forward to the test series coming up, and continuing work on flight hardware that is currently in production for the ICPS, Orion stage adapter and LVSA."

For the ICPS, Boeing modified the design of the existing ULA Delta Cryogenic Second Stage, used on United Launch Alliance's Delta IV family of launch vehicles. It will be powered by an Aerojet Rocketdyne RL-10B engine - also currently used on the Delta Cryogenic Second Stage. Modifications to the Delta Cryogenic Second Stage include lengthening the liquid hydrogen tank, adding hydrazine bottles for attitude control and making some minor avionics changes to meet the design parameters and performance characteristics as needed by NASA to meet the flight objectives.

The Boeing/ULA team is working to complete production of the ICPS flight hardware that will launch on the first SLS flight with Orion in late 2018. "We are making great progress on the flight hardware with our ULA and NASA partners," said Cataldo Mazzola, the Boeing ICPS test manager.

The SLS Block I configuration, the first version of SLS, will have a minimum 70-metric-ton (77-ton) lift capability and be powered by twin solid rocket boosters and four RS-25 engines.

The next planned upgrade of SLS, Block 1B, will use a more powerful exploration upper stage for more ambitious missions with a 105-metric-ton (115-ton) lift capacity. Block 2 will add a pair of advanced solid or liquid propellant boosters to provide a 130-metric-ton (143-ton) lift capacity. In each configuration, SLS will continue to use the same core stage and four RS-25 engines.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Space Launch System
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MARSDAILY
Remarkably diverse flora in Utah, USA, trains scientists for future missions on Mars
London, UK (SPX) Jun 10, 2016
Future Martian explorers might not need to leave the Earth to prepare themselves for life on the Red Planet. The Mars Society have built an analogue research site in Utah, USA, which simulates the conditions on our neighbouring planet. Practicing the methods needed to collect biological samples while wearing spacesuits, a team of Canadian scientists have studied the diverse local flora. Al ... read more


MARSDAILY
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

MARSDAILY
China's new launch center to get new viewing areas

China preparing for new era of space economy

China to send Chang'e-4 to south pole of moon's far-side

Experts Fear Chinese Space Station Could Crash Into Earth

MARSDAILY
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

MARSDAILY
Case Bolstered for a Present-Day Subsurface Ocean on Pluto

New evidence suggests Pluto likely features subsurface ocean

Extreme trans-Neptunian objects lead the way to Planet Nine

The Jagged Shores of Pluto's Highlands

MARSDAILY
Cassini goes up and over for final mission tour of Saturn

The hard knock life of Saturn's Epimetheus

Enceladus jets: surprises in starlight

Discovering the bath scum on Titan

MARSDAILY
Caribbean Sea acts like a whistle and can be 'heard' from space

Russia, Italy to build earth remote sensing satellite network

A First: NASA Spots Single Methane Leak from Space

Satellite tracking unlock mystery of Hawksbill migration in South Pacific

MARSDAILY
Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

MARSDAILY
Newborn Planet Discovered Around Young Star

NASA's K2 Finds Newborn Exoplanet Around Young Star

"Electric Wind" Can Strip Earth-Like Planets of Oceans and Atmospheres

San Francisco State University astronomer helps discover giant planet orbiting 2 suns









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.