Experiments with salt-tolerant bacteria in brine have implications for life on Mars by Staff Writers San Francisco CA (SPX) Jun 24, 2019
Salt-tolerant bacteria grown in brine were able to revive after the brine was put through a cycle of drying and rewetting. The research has implications for the possibility of life on Mars, as well as for the danger of contaminating Mars and other planetary bodies with terrestrial microbes. The research is presented at ASM Microbe 2019, the annual meeting of the American Society for Microbiology. "Ours is the first demonstration of microbes surviving and growing after being dried and then re-wetted with humidity only," said Mark Schneegurt, PhD, Professor of Biological Sciences at Wichita State University, Wichita, KS. While parched, Mars' surface has abundant sulfate salts of calcium, iron, and magnesium which could form saturated brines - even at some of the frigid temperatures that prevail on the red planet's surface - that could be compatible with terrestrial microorganisms, or that could harbor Martian microbes. Despite the red planet's apparent aridity, humidity is thought to reach 80% to 100% at night and then plummet during the daytime as temperatures rise. "The likelihood is high that at times surface salts may be able to attract sufficient water to form brines that can support microbial growth," said Dr. Schneegurt. "The current research may also help redefine what constitutes a habitable zone, broadening the search for life to other icy worlds." In the study, the investigators grew species of Halomonas and Marinococcus obtained from Hot Lake, in Washington, and Great Salt Plains, in Oklahoma, in media containing 50% magnesium sulfate and 50% water. They took small drops of the grown culture and dried them in a container with water-absorbing chemicals under a vacuum, which takes about two hours. The dried drops were locked in a Mason jar with some water or a salt solution, and the jar fills with humidity. Within a day, the salts in the dried culture absorb enough water to make a liquid brine, at which point the bacterial cells revive. While there is modest cell death with each cycle - typically less than 50% - a substantial proportion of cells survive. In experiments where water was not added directly to the dried cultures, the investigators maintained the cultures in a sealed jar, above a layer of water or a salt solution. The dry, water-attracting magnesium sulfate formed a saturated brine in less than a day by absorbing moisture from the air inside the jar. Surviving cells revived, and began to grow, reaching high culture densities. "Liquid water is key to life," said Dr. Schneegurt. "Liquid water on Mars is likely saturated with salts. We work at the limits of life to demonstrate microbial tolerances to high salts and low temperatures." "Understanding how microbes can grow on Mars relates directly to the risks of contaminating Mars or other celestial bodies with organisms that can potentially grow on these worlds. This also speaks to the definition of habitable zones and the search for life on Mars and the icy worlds," said Dr. Schneegurt.
Johnson-built device to help Mars 2020 rover search for signs of life Houston TX (SPX) Jun 13, 2019 Next summer, NASA is launching the Mars 2020 robotic rover to the Red Planet, loaded with equipment to search for signs that there once was life on Mars. One device, called the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument, will be used to detect chemicals on the Martian surface that are linked to the existence of life. To keep the instrument working well, a team from the Astromaterials Research and Exploration Science (ARES) division a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |