Mars Exploration News  
MARSDAILY
European-Russian space mission steps up the search for life on Mars
by Staff Writers
Moscowm Russia (SPX) Jan 25, 2018


These are the main photochemical pathways known or expected to occur on Mars and their relation to ACS measurement capabilities.

In 2013, the European Space Agency and Roscosmos - the Russian governmental body responsible for space research - agreed to cooperate on ExoMars, the first joint interplanetary mission between ESA and Russia. This project now involves scientists from 29 research organizations, including MIPT and the Space Research Institute of the Russian Academy of Sciences, which is the leading contributor of hardware and equipment on the Russian side. By now, the first package of observation instruments has been delivered into Mars orbit to seek the minor chemical components of the planet's atmosphere that may be traces of primitive life.

Even if the new data prove to be inconclusive, they will definitely heat up the discussion on whether there ever was life on the red planet. In early 2018, the ExoMars satellite with research instruments on board will lower into its operational orbit and begin observations of the Martian atmosphere. A recent article in Space Science Reviews describes the makeup and objectives of one of the two Russian-built instruments carried by the orbiter.

The ExoMars joint space mission of ESA and Roscosmos involves two phases. The first one started on March 14, 2016, with the launch of a Proton-M booster rocket from Russia's space complex in Baikonur, Kazakhstan. The rocket launched two modules: the Schiaparelli lander and the Trace Gas Orbiter (TGO). The two were delivered to Mars in 226 days, making a journey of 500 million kilometers.

Schiaparelli was intended to test the technology for future landings. It attempted a landing but crashed when it hit the surface of Mars. TGO's objectives are to detect trace gases in the atmosphere, map water ice distribution below the surface, and conduct high-resolution imaging, including stereo surface imaging.

The favorable periods for sending spacecraft to Mars, known as launch windows, happen once in about two years, and the second phase of the ExoMars mission is scheduled for 2020. It is planned that a new lander will deploy a rover to navigate autonomously across the Martian surface, transmitting the data it collects via TGO.

The main objective of the ExoMars mission is finding an answer to one of the most intriguing questions in modern science: Did life ever exist on Mars?

The TGO satellite carries four scientific instruments: a high-resolution color imaging system, a high-resolution neutron detector, and two spectrometer suites. The epithermal neutron detector and the atmospheric chemistry suite (ACS) - were built at the Space Research Institute in Moscow.

TGO's primary scientific objective is to study the climate, atmosphere, and surface of Mars. Using its onboard detectors, sensitive enough to spot trace amounts of gases, the orbiter is expected to settle the doubts concerning the presence of atmospheric methane on Mars. This gas was previously detected by Earth-based telescopes and NASA's Curiosity rover.

The Russian-built ACS (fig. 1) comprises three infrared spectrometers. It was made sensitive enough to detect and measure trace amounts of atmospheric gases such as methane, which could be a sign of geological or biological activity on Mars. The spectrometers have a resolving power of 10,000 or more and a broad spectral coverage - from 0.7 to 17 micrometers. With their help, TGO will clarify the role of the major Martian atmospheric constituents - carbon dioxide, water vapor, and aerosols - in the planet's climate.

The near-infrared (NIR) channel is accommodated by a versatile echelle spectrometer covering the spectral range between 0.7 and 1.6 micrometers with a resolving power of about 20,000. This device will mainly focus on the measurements of water vapor, aerosols, the dayside airglows of molecular oxygen, and the nightside airglows caused by the photochemical processes in the Martian atmosphere.

Observations in the near-infrared band will be conducted in three primary modes (fig. 2). Namely, the solar occultation measurements of light passing through the Martian atmosphere and the nadir - or "straight-down" - measurements of sunlight reflected by the planet and its own radiation. Limb measurements are also supported.

The mid-infrared (MIR) channel is a cross-dispersion echelle spectrometer dedicated to solar occultation measurements in the 2.2-4.4 micrometer range. It has a resolving power of more than 50,000. By design, ACS-MIR will make high-sensitivity measurements of trace gas content, including methane and aerosol concentrations, and the deuterium-to-hydrogen ratio. Meeting the key objectives of the ExoMars mission will depend on observations in the mid-infrared band. It is largely this channel that holds promise of a scientific breakthrough.

"It enables measurements of Martian atmosphere that are hundreds of times more accurate than ever before," says chief engineer Alexander Trokhimovskiy of the Space Research Institute, RAS, who led the work on ACS-MIR.

"Also, the probe is bound for an orbit that makes fairly frequent solar occultation observations possible."

"MIPT has developed data processing algorithms and designed a general circulation model of Martian atmosphere, which is required for planning experiments and interpreting their results," adds Alexander Rodin, the head of the Applied Infrared Spectroscopy Lab at MIPT.

Known as TIRVIM, the third ACS instrument is a Fourier-transform spectrometer operating in the 1.7-17-micrometer range with a resolution of 0.2-1.3 per centimeter. It is responsible for gathering the data on Martian climate: atmospheric temperature profiles, dust content, and surface temperature.

Thermal infrared measurements are expected to map temperatures from the surface of the planet all the way up to the altitude of about 60 kilometers. The instrument will also make it possible to estimate the optical depths of Martian dust and clouds with unparalleled precision, providing an opportunity to detect ozone and hydrogen peroxide - two gases fundamental to Martian photochemistry (fig. 3).

The TIRVIM detector owes the first half of its name to the thermal infrared, or TIR, spectral band, but the three final letters in the acronym honor Vasily Ivanovich Moroz, the founder of Russian infrared spectrometry and long-standing head of the Department of Planetary Physics at the Space Research Institute of the Russian Academy of Sciences.

Research paper

MARSDAILY
New technique for finding life on Mars
Washington DC (SPX) Jan 19, 2018
Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific instruments and new microbiology techniques to identify and examine microorganisms in the Canadian high Arctic - one of the closest analogs to Mars on Earth. By avoiding ... read more

Related Links
Moscow Institute of Physics and Technology
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Russia at work on new station, lunar trips: says top rocket scientist

Russian company declassifies 1973 report on Lunokhod-2 lunar rover

Possible Lava Tube Skylights Discovered Near the North Pole of the Moon

Funding runs dry for Indian Google X Prize lunar team

MARSDAILY
Yang Liwei looks back at China's first manned space mission

China to launch first student satellite for scientific education

Space agency to pick those with the right stuff

China to select astronauts for its space station

MARSDAILY
NASA, USGS confirm Michigan meteorite strike

Asteroid to pass by Earth in Feb.

Asteroid 2002 AJ129 to Fly Safely Past Earth February 4

Study identifies processes of rock formed by meteors or nuclear blasts

MARSDAILY
JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

MARSDAILY
Cassini finds Titan has 'sea level' like Earth

Titan topographic map unearths cookie-cutter holes in moon's surface

Giant Storms Cause Palpitations in Saturn's Atmospheric Heartbeat

Electrical and Chemical Coupling Between Saturn and Its Ring

MARSDAILY
Nutrients and warming massively increase methane emissions from lakes

Satellites paint a detailed picture of maritime activity

'First Light' images from CERES FM6 Earth-observing instrument

UW researcher leads study of first quantifiable observation of cloud seeding

MARSDAILY
Two US spacewalkers replace latching end of robotic arm

ASU engineer showcases NASA research for Congress

Orion Spacecraft Recovery Rehearsal Underway

Italy's First Female Astronaut: 'No Room for Conflicts in Space'

MARSDAILY
TRAPPIST-1 System Planets Potentially Habitable

Viruses are everywhere, maybe even in space

Rutgers scientists discover 'Legos of life'

NASA study shows disk patterns can self-generate









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.