Dyes for 'live' extremophile labeling will help discover life on Mars by Staff Writers Moscow, Russia (SPX) Mar 02, 2018
Researchers from MIPT and their colleagues from Research Center Juelich (Germany) and Dmitry Mendeleev University of Chemical Technology of Russia have described a new method for studying microorganisms that can survive in extreme conditions. The scientists identified a fluorescent dye that enabled them to observe the life cycle of bacteria in real time. Halophiles, which is the ancient Greek for "salt-loving," are microorganisms that thrive in high salt concentrations. Their ability to survive in hostile environments makes halophiles important scientific objects, for both theoretical and applied studies. This line of enquiry may eventually facilitate the search for extraterrestrial life, shed light on the history of the Earth, and provide data sought by biotech specialists. The authors of the paper, who work at MIPT's Laboratory for Advanced Studies of Membrane Proteins, point out that these organisms can be used for many purposes, including cleaning up oil spills. However, this research is facing a number of obstacles, not least of them being that microbiological experiments are technically quite challenging. To study microorganisms in their natural environment, dyes are required - ideally, selective ones. With their help, much more data can be obtained, compared to when an unstained medium is examined. However, well-established fluorescent labels and antibodies that dyes use to bind with a given substance often fail to work in salty environments. Additional difficulties are posed by the halophiles' thick membrane. "Despite all the hard work, scientists have so far been unable to find a substance that would enable them to observe these organisms 'live,' the way they really are. Instead, bacteria had to undergo harmful preparation," says Ivan Maslov, a fifth-year MIPT student and co-author of the study. In the new paper published in Scientific Reports, the international research team described a solution to this issue. Their experiments showed that there is no need to synthesize new types of dyes: Previously created substances for labeling mitochondria in eukaryotic cells demonstrated positive results in halophiles as well. Note: There are two major types of cells: prokaryotes and eukaryotes. Prokaryotes, represented by bacteria, lack nuclei, and other membrane-bound structures. Eukaryotes - animal, plant, and fungal cells - have nuclei and various organelles. Among them are mitochondria, which are used to generate adenosine triphosphate molecules - a universal energy source consumed in various cellular processes. Interestingly, the modern view on the subject suggests that mitochondria were originally free-living bacteria and only later became symbionts of eukaryotic cells. Even now, they still have their own DNA. MitoTracker dyes proved to be successful in staining a wide range of microorganisms: Halobacterium salinarium, Haloferax sp., Halorubrum sp., Salicola sp., and Halomonas sp. (the letters "sp" mean "one of the species"). The experiments conducted by the researchers demonstrated that it is possible not only to obtain clear photos and keep count of the cells, but also to observe the transformation of Halobacterium salinarium. When exposed to hostile chemical treatment, the cells changed their shape: From rod-shaped, they turned into spheres. The team even made a video recording of that process. The new method will be effective in labeling microorganisms in their natural environment, be it in a saline deposit on Earth or in a Martian soil sample retrieved by a rover. It will also help study the behavior of these bacteria with minimum distortions of the results. "Halophiles are often found in ancient saline deposits that have been building up for millions of years. Our method helps locate these organisms in mineral formations and study them. This can shed light on the origin of life on Earth. According to one theory, life was brought to our planet from elsewhere in the form of bacteria," comments Valentin Borshchevskiy, lead author of the study and deputy head of the Laboratory for Advanced Studies of Membrane Proteins, MIPT.
Dormant desert life hints at possibilities on Mars Miami (AFP) Feb 26, 2018 It may rain once a decade or less in South America's Atacama Desert, but tiny bacteria and microorganisms survive there, hinting at the possibility of similar life on Mars, researchers said Monday. The desert, which spans parts of Chile and Peru, is the driest non-polar desert on Earth and may contain the environment most like that of the Red Planet, said the report in the Proceedings of the National Academy of Sciences. Lead researcher Dirk Schulze-Makuch, a professor and planetary scientist at ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |