Mars Exploration News  
MARSDAILY
Curiosity rover finds patches of rock record erased, revealing clues
by Staff Writers
Pasadena CA (JPL) Jul 12, 2021

The network of cracks in this Martian rock slab called "Old Soaker" may have formed from the drying of a mud layer more than three billion years ago. The view spans about three feet (90 centimeters) left-to-right and combines three images taken by the Mars Hand Lens Imager, or MAHLI, camera on the arm of NASA's Curiosity Mars rover.

Today, Mars is a planet of extremes - it's bitterly cold, has high radiation, and is bone-dry. But billions of years ago, Mars was home to lake systems that could have sustained microbial life. As the planet's climate changed, one such lake - in Mars' Gale Crater - slowly dried out. Scientists have new evidence that super salty water, or brines, seeped deep through the cracks, between grains of soil in the parched lake bottom and altered the clay mineral-rich layers beneath.

The findings published in the July 9 edition of the journal Science and led by the team in charge of the Chemistry and Mineralogy, or CheMin, instrument - aboard NASA's Mars Science Laboratory Curiosity rover - help add to the understanding of where the rock record preserved or destroyed evidence of Mars' past and possible signs of ancient life.

"We used to think that once these layers of clay minerals formed at the bottom of the lake in Gale Crater, they stayed that way, preserving the moment in time they formed for billions of years," said Tom Bristow, CheMin principal investigator and lead author of the paper at NASA's Ames Research Center in California's Silicon Valley. "But later brines broke down these clay minerals in some places - essentially re-setting the rock record."

Mars: It Goes On Your Permanent Record
Mars has a treasure trove of incredibly ancient rocks and minerals compared with Earth. And with Gale Crater's undisturbed layers of rocks, scientists knew it would be an excellent site to search for evidence of the planet's history, and possibly life.

Using CheMin, scientists compared samples taken from two areas about a quarter-mile apart from a layer of mudstone deposited billions of years ago at the bottom of the lake at Gale Crater. Surprisingly, in one area, about half the clay minerals they expected to find were missing. Instead, they found mudstones rich with iron oxides - minerals that give Mars its characteristic rusty red color.

Scientists knew the mudstones sampled were about the same age and started out the same - loaded with clays - in both areas studied. So why then, as Curiosity explored the sedimentary clay deposits along Gale Crater did patches of clay minerals - and the evidence they preserve - "disappear"?

Clays Hold Clues
Minerals are like a time capsule; they provide a record of what the environment was like at the time they formed. Clay minerals have water in their structure and are evidence that the soils and rocks that contain them came into contact with water at some point.

"Since the minerals we find on Mars also form in some locations on Earth, we can use what we know about how they form on Earth to tell us about how salty or acidic the waters on ancient Mars were," said Liz Rampe, CheMin deputy principal investigator and co-author at NASA's Johnson Space Center in Houston.

Previous work revealed that, while Gale Crater's lakes were present and even after they dried out, groundwater moved below the surface, dissolving and transporting chemicals. After they were deposited and buried, some mudstone pockets experienced different conditions and processes due to interactions with these waters that changed the mineralogy. This process, known as "diagenesis," often complicates or erases the soil's previous history and writes a new one.

Diagenesis creates an underground environment that can support microbial life. In fact, some very unique habitats on Earth - in which microbes thrive - are known as "deep biospheres."

"These are excellent places to look for evidence of ancient life and gauge habitability," said John Grotzinger, CheMin co-investigator and co-author at Caltech in Pasadena, California. "Even though diagenesis may erase the signs of life in the original lake, it creates the chemical gradients necessary to support subsurface life, so we are really excited to have discovered this."

By comparing the details of minerals from both samples, the team concluded that briny water filtering down through overlying sediment layers was responsible for the changes. Unlike the relatively freshwater lake present when the mudstones formed, the salty water is suspected to have come from later lakes that existed within an overall drier environment.

Scientists believe these results offer further evidence of the impacts of Mars's climate change billions of years ago. They also provide more detailed information that is then used to guide the Curiosity rover's investigations into the history of the Red Planet. This information also will be utilized by NASA's Mars 2020 Perseverance rover team as they evaluate and select rock samples for eventual return to Earth.

"We've learned something very important: there are some parts of the Martian rock record that aren't so good at preserving evidence of the planet's past and possible life," said Ashwin Vasavada, Curiosity project scientist and co-author at NASA's Jet Propulsion Laboratory in Southern California. "The fortunate thing is we find both close together in Gale Crater, and can use mineralogy to tell which is which."

Curiosity is in the initial phase of investigating the transition to a "sulfate-bearing unit," or rocks thought to have formed while Mars's climate dried out.


Related Links
Curiosity Mars Science Laboratory
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
NASA's Curiosity team names Martian hill that serves as mission gateway
Greenbelt MD (SPX) Apr 06, 2021
The team of scientists and engineers behind NASA's Curiosity rover named a hill along the rover's path on Mars in honor of a recently deceased mission scientist. A craggy hump that stretches 450 feet (120 meters) tall, "Rafael Navarro mountain" is located on Mount Sharp in northwest Gale Crater. The inspiration for the name is award-winning scientist Rafael Navarro-Gonzalez; he died on Jan. 28, 2021, from complications related to COVID-19. A leading astrobiologist in Mexico, Navarro-Gonzalez was a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
China kicks off lunar sample study programs

China declares Chang'e-4 mission complete success

Scientists get first samples from moon

NASA, Northrop Grumman finalize Moon outpost living quarters contract

MARSDAILY
Exercise bike in space helps keep crew fit

Homemade spacesuits ensure safety of Chinese astronauts in space

Tiangong: astronauts are working on China's new space station - here's what to expect

Mechanical arm is Chinese astronauts' space helper

MARSDAILY
NASA Lucy mission's message to the future

Early Earth was bombarded by series of city-sized asteroids

Chinese Scientists Suggest Launching Dozens of Rockets to Prevent Asteroid Collision With Earth

Eye of ESA's asteroid mission

MARSDAILY
The mystery of what causes Jupiter's X-ray auroras is solved

Surface of Jupiter's moon Europa churned by small impacts

Scientists solve 40-year mystery over Jupiter's X-ray aurora

Giant comet found in outer solar system by Dark Energy Survey

MARSDAILY
Icequakes likely rumble along geyser-spitting fractures in Saturn's icy moon Enceladus

Methane in the plumes of Saturn's moon Enceladus: Possible signs of life?

Glenn researchers study new, futuristic concept to explore Titan

Johns Hopkins Scientists Model Saturn's Interior

MARSDAILY
How more than 30 years of China's meteorological satellite data is used by the world

NASA Space Lasers Map Meltwater Lakes in Antarctica With Striking Precision

Swarm yields new insight into animal migration

Blackjack program deploys two Mandrake 2 satellites

MARSDAILY
'Experience of a lifetime': Billionaire Branson achieves space dream

NASA solar sail asteroid mission readies for launch on Artemis I

Chinese harvests first batch of 'space rice'

Virgin Galactic, Blue Origin face off in space tourism market

MARSDAILY
Four newly found exoplanets may offer insights into Earth's teenage years

Goldilocks planets 'with a tilt' may develop more complex life

TESS discovers stellar siblings host 'teenage' exoplanets

Haziness of exoplanet atmospheres depends on properties of aerosol particles









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.