Subscribe free to our newsletters via your
. Mars Exploration News .




MARSDAILY
Ancient Martian lake system records 2 water-related events
by Staff Writers
Providence RI (SPX) Mar 26, 2015


A false-color topographic map (blue marks low elevations) shows the area around Mars's Jezero Crater, which was home to an ancient lake system. New research shows that the region around Jezero hosted at least two separate episodes of water activity. Image courtesy NASA/MSSS/ASU/GSF. For a larger version of this image please go here.

Researchers from Brown University have completed a new analysis of an ancient Martian lake system in Jezero Crater, near the planet's equator. The study finds that the onslaught of water that filled the crater was one of at least two separate periods of water activity in the region surrounding Jezero.

"We can say that this one really well-exposed location makes a strong case for at least two periods of water-related activity in Mars' history," said Tim Goudge, a graduate student at Brown who led the work. "That tells us something really interesting about how early Mars operated."

The study is in press in the Journal of Geophysical Research: Planets.

The ancient lake at Jezero crater was first identified in 2005 by Caleb Fassett, a former Brown graduate student now a professor at Mount Holyoke College. Fassett identified two channels on the northern and western sides of the crater that appear to have supplied it with water.

That water eventually overtopped the crater wall on the southern side and flowed out through a third large channel. It's not clear how long the system was active, but seems to have dried out around 3.5 to 3.8 billion years ago.

Each of the crater's inlet channels has a delta-like deposit where sediment carried by water was deposited in the lake. In 2008, Bethany Ehlmann, another former Brown graduate student now a professor at Caltech, showed that those fan deposits are full of clay minerals -- a clear sign of alteration by water. The question of how exactly those minerals formed, however, remained open. Did the minerals form in place in the lake, or did they form elsewhere and get transported into the lake?

That's the question Goudge and his colleagues wanted to answer.

To do that, Goudge gathered high-resolution orbital images from NASA's CTX instrument, and combined them with data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard NASA's Mars Reconnaissance Orbiter. Using those two sources, Goudge put together a detailed geological and mineralogical map of the entire Jezero Crater paleolake system.

The map showed that each of the fan deposits has its own distinct mineral signature that matches the signature of the watershed from which it was sourced. "That's a good indication that the minerals formed in the watershed and were then transported into the lake," Goudge said.

The minerals' formation and their transportation seem to have been separated by a fair amount of time. Mapping of the watershed showed a younger layer of rock that sits on top of the hydrated minerals. The crater's inlet channels cut through that layer of younger rock. That means the water that carved the channels must have flowed well after the mineral layer had formed.

"What it implies is that there were actually two periods of water-related activity," Goudge said. "The earlier episode formed the alteration minerals in the watershed, then some time later you had the surface water activity that transported the minerals into the lake. At this site, those two events appear not to have been genetically related."

That finding could shed light on the water story for early Mars. It's clear that Mars was once much wetter than it is now, but it's not clear that the Martian climate was warm enough to sustain liquid water at the surface for long periods. Some researchers have suggested that if the early Martian climate was cold, chemical alteration on Mars may have been driven largely by water percolating in the warmer subsurface crust.

That period of subsurface activity was followed some time later by pulses of water on the surface -- potentially sourced by either snowmelt or rainfall -- during transient periods of warm temperatures. That second round of events was largely responsible for the mechanical erosion on the Martian surface.

The events at Jezero seem to be consistent with that idea, the researchers say.

The fact that Jezero crater records the history of two separate water events makes it an interesting target for future study. In fact, Jezero is high on scientists' list of possible landing sites for NASA's Mars 2020 rover. If life had emerged in either of the two water-related events, signs of it may well have been preserved at Jezero.

"River and lake deposits on Earth are some of the best preservers of biologic signatures," Goudge said. "At Jezero, you're gathering all this material from this huge watershed and dumping into one place. So if there perhaps was any biologic or organic material in the watershed, you might have transported some of that to the basin."

The water that stood in the lake from the second event does not seem to have chemically altered the rock much at all, the new study shows. That helps confirm what previous researchers had suspected: that Jezero was filled with fairly fresh water with a nearly neutral pH -- making it a potentially habitable environment.

NASA held a workshop last May to start the process of selecting sites for the 2020 rover. Goudge and his colleagues gave a presentation making the case for Jezero, and the scientists in attendance voted it as one of the top five landing site candidates. There are several more rounds of the selection process to go, and Goudge hopes Jezero will stay in contention.

"We think Jezero has a really interesting story to tell," Goudge said. "It would be a fun place to get to drive around in."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MARSDAILY
Could Water Have Carved Channels On Mars Half A Million Years Ago?
Moffett Field CA (SPX) Mar 20, 2015
Could water have carved channels on Mars as recently as 500,000 years ago? If that's the case, it would boost the case for relatively recent life on the Red Planet. There's abundant evidence showing that Mars was wet early in its 4.5 billion history, but new research suggests that the water comes in cycles, providing opportunities for life to take a hold in between the long, cold ice ages. ... read more


MARSDAILY
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

MARSDAILY
China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

MARSDAILY
One-Year Crew Set for Launch to Space Station

Russia, US May Sign New Deal to Send Astronauts to ISS

Lockheed Martin reveals new method for resupplying space station

Testing astronauts' lungs in Space Station airlock

MARSDAILY
Name the features on Pluto and its moon Charon

Science Shorts: Why Pluto?

Pluto Science, on the Surface

Science Shorts: How Big Is Pluto's Atmosphere?

MARSDAILY
Titan's Atmosphere Created As Gases Escaped Core

Researchers study methane-rich plumes from Saturn's icy moon Enceladus

Hot water activity on icy moon's seafloor

Exploring the Depths of Titan's Seas

MARSDAILY
UK data hub will maximize benefits of Europe's EO program

US and UAE Ink Bilateral Space Cooperation

Space Radar Helps Track Underground Water Pollution Risk

New NASA Mission to Study Ocean Color, Airborne Particles and Clouds

MARSDAILY
50 years ago today, space welcomed its first sandwich

Small Staff has Big Impact Showing How NASA Can Engage Students

TED Prize winner wishes for archive of human wisdom

The Science Of The Start-Up

MARSDAILY
Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting

Some habitable exoplanets could experience wildly unpredictable climates




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.