Mars Exploration News  
MARSDAILY
A funnel on mars could be a place to look for life
by Staff Writers
Austin TX (SPX) Nov 11, 2016


(Left) A graph charting the depth of the Hellas depression at different points, and a topographic map of the depression. (Right) A graph charting the depth of the Galaxias Fossae depression at different points, and a topographic map of the depression. Image courtesy Joseph Levy and NASA. For a larger version of this image please go here.

A strangely shaped depression on Mars could be a new place to look for signs of life on the Red Planet, according to a University of Texas at Austin-led study. The depression was probably formed by a volcano beneath a glacier and could have been a warm, chemical-rich environment well suited for microbial life.

"We were drawn to this site because it looked like it could host some of the key ingredients for habitability - water, heat and nutrients," said lead author Joseph Levy, a research associate at the University of Texas Institute for Geophysics, a research unit of the Jackson School of Geosciences.

The depression is inside a crater perched on the rim of the Hellas basin on Mars and surrounded by ancient glacial deposits. It first caught Levy's attention in 2009, when he noticed crack-like features on pictures of depressions taken by the Mars Reconnaissance Orbiter that looked similar to "ice cauldrons" on Earth, formations found in Iceland and Greenland made by volcanos erupting under an ice sheet. Another depression in the Galaxias Fossae region of Mars had a similar appearance.

"These landforms caught our eye because they're weird looking. They're concentrically fractured so they look like a bulls-eye. That can be a very diagnostic pattern you see in Earth materials," said Levy, who was a postdoctoral researcher at Portland State University when he first saw the photos of the depressions.

But it wasn't until this year that he and his research team were able to more thoroughly analyze the depressions using stereoscopic images to investigate whether the depressions were made by underground volcanic activity that melted away surface ice or by an impact from an asteroid.

Study collaborator Timothy Goudge, a postdoctoral fellow at the institute, used pairs of high-resolution images to create digital elevation models of the depressions that enabled in-depth analysis of their shape and structure in 3-D. Researchers from Brown University and Mount Holyoke College also participated in the study.

"The big contribution of the study was that we were able to measure not just their shape and appearance, but also how much material was lost to form the depressions. That 3-D view lets us test this idea of volcanic or impact," Levy said.

The analysis revealed that both depressions shared an unusual funnel shape, with a broad perimeter that gradually narrowed with depth.

"That surprised us and led to a lot of thinking about whether it meant there was melting concentrated in the center that removed ice and allowed stuff to pour in from the sides. Or if you had an impact crater, did you start with a much smaller crater in the past, and by sublimating away ice, you've expanded the apparent size of the crater," Levy said.

After testing formation scenarios for the two depressions, researchers found that they probably formed in different ways. The debris spread around the Galaxias Fossae depression suggests that it was the result of an impact - but the known volcanic history of the area still doesn't rule out volcanic origins, Levy said. In contrast, the Hellas depression has many signs of volcanic origins. It lacks the surrounding debris of an impact and has a fracture pattern associated with concentrated removal of ice by melting or sublimation.

The interaction of lava and ice to form a depression would be an exciting find, Levy said, because it could create an environment with liquid water and chemical nutrients, both ingredients required for life on Earth. He said that the Hellas depression and, to a lesser extent, the Galaxias Fossae depression, should be kept in mind when looking for habitats on Mars.

Gro Pedersen, a volcanologist at the University of Iceland who was not involved with the study, agrees that the depressions are promising sites for future research.

"These features do really resemble ice cauldrons known from Earth, and just from that perspective they should be of great interest," Pedersen said. "Both because their existence may provide information on the properties of subsurface material - the potential existence of ice - and because of the potential for revealing ice-volcano interactions."

The findings were published this month in Icarus, the International Journal of Solar System Studies.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Texas at Austin
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MARSDAILY
Iron-Loving Bacteria A Model For Mars Life
Moffett Field CA (SPX) Nov 09, 2016
Single-celled microbes are considered a living example of the kind of life that might exist elsewhere in the Universe, as they are able to survive some of the extreme conditions that exist on other worlds. New research on the bacterium Tepidibacillus decaturensis shows that it could be a model organism for what might live on Mars, should any creature inhabit the Red Planet. This microorgan ... read more


MARSDAILY
There's an 'extra-super' Moon on the rise

November 14th's Super-Close Full Moon

China "well prepared" to launch Chang'e-5 lunar probe in 2017: top scientist

New Model Explains the Moon's Weird Orbit

MARSDAILY
China launches pulsar test satellite

China's Chang'e-2 a success

Long March-5 reflects China's "greatest advancement" yet in rockets

New heavy-lift carrier rocket boosts China's space dream

MARSDAILY
Station crew get special delivery from Virginia

Orbital cargo ship arrives at space station

New Instrument on ISS to Study Ultra-Cold Quantum Gases

Two Russians, one American blast off to ISS

MARSDAILY
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish

MARSDAILY
Vast equatorial jet stream in Saturn's atmosphere are revealed

Watching Summer Clouds on Titan

Titan experiences dramatic seasonal changes

Going Out in a Blaze of Glory: Cassini's Grand Finale

MARSDAILY
Successful calculation of human and natural influence on cloud formation

A Box of 'Black Magic' to Study Earth from Space

Extreme weather warnings at UN climate meeting

Don't see ISRO's Bhuvan as competition: Google India

MARSDAILY
Progress, but uphill slog for women in tech

NavCube could support an X-ray communication test in space

NASA, Navy practice Orion module recovery

Weightless tourism just 4 years away

MARSDAILY
Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

What happens to a pathogenic fungus grown in space?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.