. Mars Exploration News .

Where is Deimos?
by Staff Writers
Paris (ESA) Sep 27, 2012

Mars Express image of the moons Phobos (foreground) and Deimos (background). Credit: ESA/DLR/FU Berlin (G. Neukum).

Despite more than a century of observations, the orbit of the Martian moon Deimos is still not known to a high degree of accuracy, but a new study using images taken by ESA's Mars Express orbiter has provided the best orbital model to date.

135 years have passed since Asaph Hall discovered Phobos and Deimos, two small companions of the planet Mars. Since that time, the satellites have been imaged innumerable times from the Earth and from spacecraft, including recent measurements by the panoramic cameras on the Mars Exploration Rovers and instruments on the Mars Reconnaissance Orbiter.

Although the orbit of the inner moon, Phobos, has been calculated to an accuracy of less than 1 km, the path of more remote Deimos is less well known. In order to improve the orbital models for Deimos, researchers from Germany and Russia have developed a new technique which compares images taken by Mars Express.

Deimos follows an almost circular, near-equatorial orbit at a mean distance of 23 458 km from the centre of Mars. Unlike other Mars orbiters, Mars Express follows an elliptical, near-polar orbit which occasionally enables it to obtain excellent views of Deimos.

Between July 2005 and July 2011, the spacecraft made 50 approaches to Deimos, passing within 14 000 km of the satellite. The closest approach was in March 2011, when the orbiter closed to a range of about 9600 km. However, since the moon is tidally locked to the planet, the spacecraft largely observes the same Mars-facing areas on its surface.

136 images were acquired at different places along Deimos' orbit by the Super Resolution Channel (SRC) of the High Resolution Stereo Camera (HRSC). The SRC is a 1K x 1K CCD-framing camera which is designed to focus on features of interest within the HRSC image strips, when imaging Mars. In comparison with the HRSC, it magnifies features in the image by a factor of about four. In the case of Deimos, the framing images are ideal for astrometric (positional) measurements of the small Martian satellite.

Any astrometric measurement requires good knowledge of the observer's location and viewing direction. In the case of the observations from Mars Express, the position of the spacecraft and the direction in which the camera was pointing were derived from navigational data provided by the European Space Operations Centre (ESOC) in Darmstadt, Germany.

The attitude of the spacecraft (and the pointing of the body-mounted camera) is measured by using two star trackers and three laser gyroscopes. The SRC pointing was verified and corrected for by measuring differences between the observed and predicted positions of background stars in the images. Owing to the SRC's narrow field of view, usually one or two faint stars per image could be observed. The precise positions of these stars are known from catalogues based on data returned by ESA's Hipparcos satellite.

In a paper accepted for publication in Astronomy and Astrophysics, the researchers describe how they used a new astrometric technique, in which the centre-of-figure of non-spherical Deimos was determined by fitting the predicted limb (visible edge) of the satellite to the observed limb.

Over a period of 1.5 to 3.5 minutes, a sequence of seven or eight images was acquired as Deimos moved across the field of view. In all cases, the first and the last image were taken with long time exposures (about 500 ms) to capture faint background stars (magnitudes ranging from 3.4 to 8.8). From the five or six short-time exposures, two to four images usually included Deimos.

"From 50 sets of observations, we fortuitously had nine in which stars were sufficiently bright to be seen in all images," said Andreas Pasewaldt, a PhD student at the Institute of Planetary Research in Berlin, lead author of the paper. "We obtained a set of spacecraft-centred Deimos coordinates with accuracies between 0.6 and 3.6 km.

"Using a shape model, together with nominal data on Deimos' position and rotational state, we predicted the limb that would be observed from the spacecraft. This limb was projected onto the SRC image, and then fitted to the observed limb during a series of manual and automated steps. This eventually gave us the precise position of the centre of figure for Deimos.

"Comparisons with current orbit models indicate that Deimos is ahead of, or falling behind, its predicted position by as much as +3.4 km or -4.7 km, depending on the chosen model. The data obtained by our 'limb fit method' should considerably improve the models of its orbit."

There is considerable interest in the orbital tracking of the Martian moons. Phobos, moving deep within the gravity field of Mars, is strongly affected by tidal interaction with the planet. This will eventually cause the moon to crash into Mars or break apart, creating a ring of debris. In contrast, Deimos is far enough from Mars to take more than one Martian day to complete each orbit, so it is spiralling slowly outwards.

Improved knowledge of their orbits will also shed new light on the history of the satellite system. Such knowledge is particularly important in the interpretation of gravity field data, acquired during very close flybys. This enables the researchers to model the interiors of the moons and put constraints on their origin.

"It is unclear whether they are asteroids that were captured by Mars or whether they coalesced from a ring of material that formed around the planet after a large object collided with Mars, although the latter scenario seems to be favoured in recent years," said Olivier Witasse, ESA's Mars Express project scientist. "Simultaneous modelling of both orbits may provide strong constraints on the origin and evolution of Phobos and Deimos."

"Better orbital models are also important for future satellite missions, such as automated sample returns currently being studied at ESA, when high navigational accuracy is needed."

Related Links
Mars Express
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

A windshield wiper for Mars dust
Madrid, Spain (SPX) Sep 26, 2012
A team of researchers at Universidad Carlos III in Madrid (UC3M) has developed a device that works as a windshield wiper to eliminate Mars dust from the sensors on the NASA spacecrafts that travel to the red planet. The actuator, a type of brush made up of Teflon fibers that are moved by materials that have shape memory, was designed to clean the ultraviolet sensors that were part of the N ... read more

China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

China's manned spacecraft in final preparations for mid-June launch

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

Russia to send all-novice crew to ISS

ATV undocking postponed

Space freighter undocking set for Friday

Crew Members Prepare for Departure

Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

e2v To Supply Large CMOS Imaging Sensors For Imaging Kuiper Belt Objects

Fly New Horizons through the Kuiper Belt

Does Triton Have a Subsurface Ocean?

Saturn and its Largest Moon Reflect Their True Colors

Giant Ice Avalanches On Iapetus Provide Clue To Extreme Slippage Elsewhere In The Solar System

River networks on Titan point to a puzzling geologic history

Landslide mapping in the Swiss Alps

Radar altimetry gains altitude in Venice

China may toughen laws on 'illegal' mapping: state media

Knight Foundation invests to accelerate data projects

Bryan Campen joins XCOR as Director of Media and Public Relations

B612 Wins Funding Support From Prominent Business Leadersy

Cavenauts return to Earth

Brazil unveils tax incentives to boost tech innovation

Stagnant Interiors Suppress Chances of Life on Super-Earths

Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

Planets Can Form in the Galactic Center

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement