. Mars Exploration News .

What Arctic Rocks Say About Mars: An Interview with Hans Amundsen
by Leslie Mullen for Astrobiology Magazine
Moffett Field CA (SPX) Nov 13, 2012

ExoMars PanCam deployed on Commanche Spur analogue carbonates in lava breccia at Sverrefjell volcano on AMASE 2011. Left: Arnold Bauer, Joanneum Research, Austria; Right: Nicole Schmitz, German Aerospace Center (DLR). Credit: Kjell Ove Storvik/ AMASE.

In 1996, a research group led by Dave McKay of NASA's Johnson Space Center claimed to have found evidence of fossilized life in a Mars meteorite. Not only did the shapes look like bacteria, but a form of magnetite (iron oxide) was found in the meteorite that, on Earth, is produced within the bodies of certain bacteria. The study also found tiny carbonate globules in the meteorite, which the scientists said likely formed by living organisms in the presence of liquid water.

Since their surprising announcement, other scientists have closely examined the Mars rock and concluded the microscopic shapes weren't necessarily associated with life, and the different features in the meteorite all could have formed by non-biological processes.

Scientists studying the rocks of the arctic archipelago of Svalbard later found carbonate globule structures like those in the Allan Hills meteorite. Rather than being formed by life, the Svalbard structures formed when the Sverrefjell volcano erupted about a million years ago, forcing magma up through an overlying glacier.

A group at the Carnegie Institution of Washington used a Ramen spectrometer to compare abiotic Svalbard carbonate globules with those found in the ALH84001 meteorite, and found a high degree of similarity.

Hans Amundsen runs the Mars analogue project AMASE (Arctic Mars Analogue Svalbard Expedition) and has been visiting Svalbard every summer for the last decade to investigate the many ways it resembles Mars.

Astrobiology Magazine editor Leslie Mullen recently sat down with him at the Third Conference on Terrestrial Mars Analogues in Marrakech, Morocco to discuss what the Svalbard rocks tell us about the still-controversial Mars meteorite.

Q: Could you tell me about the rocks in Svalbard that are analogous with the ALH 84001 Mars meteorite?

A: They have the same strange carbonate minerals as the Allan Hills meteorite.

Q: The same structures that were previously thought to be fossilized life?

A: Well, yes, McKay speculated that these spheres were some sort of indication of a bio-pattern or bio-shape. I don't know anyone who still believes that. But the shapes we see in the Svalbard rocks are identical to the ones in the Allan Hills meteorite.

Q: Identical in shape, and chemically?

A: Both.

Q: I was at a meeting a few years ago where they were still debating whether the ALH 84001 features were biological. One line of evidence they used to argue for life were the magnetic crystals they found in the meteorite.

A: Ok, yeah. The Allan Hills carbonates contain a particular type of iron oxide of magnetite with crystal morphologies that apparently are similar to what you find in microbes with these things. Some microbes use magnetite as a compass needle to navigate in the Earth's magnetic field, so it knows when it's swimming up and when it's swimming down. But to my knowledge, those morphologies are not unique to bugs.

Q: Do you find them in rocks generally?

A: Not generally, but you find magnetites of all sorts of morphologies. I guess the basic point is that the McKay group had a set of observations that could be interpreted as biogenic in origin, but if you do your homework there are lots of different ways of interpreting those features. Like those carbonate spheres. If you deposit carbonate in still-standing water, it will form spheres. Q: In any environment?

A: It's simply because the carbonate building blocks, they sort of migrate randomly in the liquid, and then suddenly one sticks. And once one has made a nucleus, the others will form on it and it will grow - it receives building blocks from around it and it just grows. You know the gem called Malachite?

Malachite is an example of a very similar texture, where you have these cauliflower bulbous things. Malachite forms in the same way, in water with malachite building blocks, obviously, and it just nucleates and it forms a cauliflower accumulation, like the carbonates in the Allan Hills meteorite. Quite a few carbonates elsewhere form like that, from many different types of fluids.

Q: So could you describe the soils you were studying and how they formed?

A: They're not really soils, it's ice in rocks. In Svalbard there were some volcanoes that erupted through a thick ice layer; it was maybe up to a kilometer thick. During that time it was extremely cold up there, more like Antarctica. So the volcanoes melted the ice and they became soaking wet. At some stage you turn the heat off, the volcanic activity stops. And because it was still extremely cold, the wet volcanoes froze.

By that time the glacial melt water that had been sitting in basalt acquired some of the magnesium and calcium from the basalt, and when it froze it had to get rid of its CO2 and calcium and magnesium and it made carbonates. So it's very similar to what happens with evaporites, you just keep removing water until your remaining fluid becomes so concentrated with whatever is left over that it starts to form minerals. And evaporation and freezing do pretty much the same thing - you simply remove H2O as vapor or ice.

Q: Was your study implying that Mars was never warm?

A: It doesn't show that Mars was never warm, but it certainly indicates that you can make minerals like in the Allan Hills meteorite under low temperature conditions, possibly during freezing or close to zero degrees C. A study published last year by a CalTech group found that the Allan Hills carbonates formed at about 20 degrees Celsius. Q: Meaning they formed in that temperature.

A: Yeah. The Svalbard ones, we don't know. But the oxygen isotopes suggests it was very cold. But we can't tell if it was zero or minus 30, because we don't know the exact composition of the waters. If you have the water and the carbonate that formed you can estimate the temperature.

But we only have the carbonate; the water is gone. But the only other carbonates on Earth that look similar to the Svalbard ones have formed during freezing of water in caves. There's examples from Arctic Canada and from Poland where there are these very unusual, very light oxygen isotopes.

And the whole setting of the Svalbard volcanoes - they probably erupted under extremely cold climatic conditions, melted the ice and then froze again. So you can't use the Allan Hills carbonates to argue for anything warm. But it was certainly wet.

Q: Volcanoes are warm, but I guess they are hot spots in a cold place.

A: Yeah, there's been volcanism on Mars throughout its history of course. But as a surface condition, you get essentially the same carbonates and sulfates forming under permafrost conditions as you do under tropical conditions. They don't look different.

Q: And there's nothing about the heat caused by being blasted off the surface that had anything to do with that? A: No, I think there could be. The Allan Hills meteorite likely witnessed several blasts nearby before it was kicked out itself. So you could have had warm events triggered by impacts.

So you warm the top layer of the crust and what maybe was permafrost then melted and froze back again. And we don't know how deep the Alan Hills meteorite originally came from. Most people are thinking of it as sitting on the surface, but it could have been hundreds of meters subsurface, and was excavated by the impact.

You know from the shocked minerals from the Allan Hills meteorite that there were impacts going on. The age of the Hills meteorite was at a time when there were lots of impacts. But you can't preclude that there was lukewarm water drizzling down from above.

Q: It's all very interesting how the questions on the meteorite structures still aren't completely settled.

A: In science there's always a debate going on, but with the search for life on Mars I think it's important to be conservative. If you can explain your observations with purely physical, abiotic processes, then you can't use it to argue that you have found life outside Earth.

The Sverrefjell carbonate story was presented at LPSC in 2011. Abstracts can be found here, here and here


Related Links
Astrobiology Magazine
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


NASA Rover Finds Clues to Changes in Mars' Atmosphere
Pasadena CA (JPL) Nov 05, 2012
NASA's car-sized rover, Curiosity, has taken significant steps toward understanding how Mars may have lost much of its original atmosphere. Learning what happened to the Martian atmosphere will help scientists assess whether the planet ever was habitable. The present atmosphere of Mars is 100 times thinner than Earth's. A set of instruments aboard the rover has ingested and analyzed ... read more

China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

China to launch 11 meteorological satellites by 2020

Crew Prepares for Spacewalk After Progress Docks

Crew Preparing for Cargo Ship, Spacewalk

Russian cargo ship docks with ISS: official

Packed Week Ahead for Six-Member Crew

Keck Observations Bring Weather Of Uranus Into Sharp Focus

At Pluto, Moons and Debris May Be Hazardous to New Horizons Spacecraft During Flyby

Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

Cassini Halloween Treat: Titan Glows in the Dark

Saturn's giant storm reveals the planet's churning atmosphere

Giant impact scenario may explain the unusual moons of Saturn

What's Baking on Titan?

Surveying Earth's interior with atomic clocks

Storms, Ozone, Vegetation and More: NASA-NOAA Suomi NPP Satellite Returns First Year of Data

NASA's SPoRT Team Tracks Hurricane Sandy

Sizing up biomass from space

Get some bed rest - all 21 days of it

Obama Win Keeps NASA's Space Plans on Course

Next steps into the final frontier

CSA: Canada finds its space in space

Discovery of a Giant Gap in the Disk of a Sun-like Star May Indicate Multiple Planets

New habitable zone super-Earth found in exosolar system

Cosmic sprinklers explained in active planetary nebula

Nearby six-planet system could be life friendly

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement