Subscribe to our free daily newsletters
  Mars Exploration News  




Subscribe to our free daily newsletters



MARSDAILY
The Moving Martian Bow Shock
by Staff Writers
Paris (ESA) Aug 23, 2017


An analysis of more than five Martian years of measurements from Mars Express has shown that the location of the bow shock - the boundary where the solar wind slows suddenly as it begins to plough into the planet's outer atmosphere - varies according to the position of Mars in its orbit. This is in addition to other factors such as the dynamic pressure of the solar wind, and the amount of extreme ultraviolet solar radiation.

As the energetic particles of the solar wind speed across interplanetary space, their motion is modified by objects in their path. A study, based on data from ESA's Mars Express orbiter, has thrown new light on a surprising interaction between the planet Mars and supersonic particles in the solar wind.

cientists have long been aware that a feature known as a bow shock forms upstream of a planet - rather like the bow of a ship, where the water is slowed and then diverted around the obstacle.

The bow shock marks a fairly sharp boundary where the solar wind slows suddenly as it begins to plough into a planet's magnetosphere or outer atmosphere.

In the case of Mars, which does not generate a global magnetic field and has a thin atmosphere, the main obstacle to the solar wind is the ionosphere - a region of electrically charged particles in its upper atmosphere.

Furthermore, the relatively small size, mass and gravity of Mars enable the formation of an extended exosphere - the outermost layer of the atmosphere, where gaseous atoms and molecules escape into space and interact directly with the solar wind.

Observations made by numerous spacecraft over many decades have shown that variations in the ionosphere and exosphere play a role in changes in the location of the bow shock boundary.

As expected, the distance of the Martian bow shock from the planet increases as the dynamic pressure of the solar wind decreases. This is rather like a weakening of the bow wave ahead of a ship as the water's flow slows down.

On the other hand, increases in the distance of the Martian bow shock coincide with increases in the amount of incoming solar radiation at extreme ultraviolet (EUV) wavelengths. Consequently, the rate at which ions and electrons are produced from atoms and molecules in the upper atmosphere increases. This results in increased thermal pressure within the ionosphere, enabling it to better counteract the incoming solar wind flow.

At the same time, newly created ions within the extended exosphere are picked up and accelerated by the electromagnetic fields carried by the solar wind. The result is a slowdown in the solar wind and a shift in the position of the bow shock.

Another possible factor in influencing the bow shock's location is the orbit of Mars. The planet's distance from the Sun is much more elliptical than that of Earth, ranging from 206 million km to 249 million km - a 20% difference.

A team of European scientists has investigated how and why the bow shock's location varies during the Martian year. In a paper published online in the 21 November 2016 issue of the Journal of Geophysical Research: Space Physics, the team has analysed more than five Martian years of measurements from the Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-3) Electron Spectrometer (ELS) to identify 11 861 bow shock crossings. This is the first analysis of the bow shock to be based on data obtained over such a prolonged period and during all Martian seasons.

As Mars Express crosses the Martian bow shock the ELS instrument typically registers a sudden increase in flux of electrons across a wide range of energies (typically up to a few hundred eV).

The scientists discovered that, on average, the bow shock is closer to Mars near aphelion (the planet's furthest point from the Sun), and further away from Mars near perihelion (the planet's closest point to the Sun). The bow shock's average distance from Mars, when measured from above the terminator (the day-night boundary) reaches a minimum of 8102 km around aphelion, while its maximum distance of 8984 km occurs around perihelion. This is an overall variation of approximately 11% during each Martian orbit.

The team also verified previous findings that the bow shock in the southern hemisphere is, on average, located farther away from Mars than in the northern hemisphere. However, this hemispherical asymmetry is small (a total distance variation of 2.4%), and the same annual variations in the bow shock occur irrespective of the hemisphere.

Solar wind density (and, therefore, dynamic pressure), the strength of the interplanetary magnetic field, and solar irradiation, are all expected to reduce with distance from the Sun. Since these parameters impact the bow shock location in different ways, the team wanted to find out which is the dominant factor throughout the Martian year.

Their somewhat surprising discovery was that the bow shock's location is more sensitive to variations in the solar EUV output than to solar wind dynamic pressure variations.

This may be largely due to the well recognised impact of EUV on the density and thermal pressure of the ionosphere, and the expansion of the exosphere (see above). These processes create buffers against the solar wind.

However, the variations in bow shock distance also correlate with annual changes in the amount of dust in the Martian atmosphere. The Martian dust storm season occurs around perihelion, when the planet is warmer and receives more solar radiation.

"Dust storms have been previously shown to interact with the upper atmosphere and ionosphere of Mars, so there may be an indirect coupling between the dust storms and bow shock location," said Benjamin Hall, lead author of the paper, who was until recently at the University of Leicester, and is currently a researcher at Lancaster University, UK.

"However, we do not draw any further conclusions on how the dust storms could directly impact the location of the Martian bow shock and leave such an investigation to a future study.

"It seems likely that no single mechanism can explain our observations, but rather a combined effect of all of them. At this point none of them can be excluded.

"Future investigations of links between atmospheric dust loading and the Martian upper atmosphere are needed, involving joint investigations by ESA's Mars Express and Trace Gas Orbiter, and NASA's MAVEN mission. Early data from MAVEN seem to confirm the trends that we discovered."

"Similar investigations were made by the ASPERA instrument that was flown on board the Venus Express orbiter, enabling us to compare physical processes and conditions at two very different planets that both have weak magnetic fields," said Dmitri Titov, ESA's Mars Express Project Scientist.

"This demonstrates the value of using the same instrumentation to explore different worlds."

The results described in this article are published in "Annual variations in the Martian bow shock location as observed by the Mars Express mission," by B.E.S. Hall et al., Journal of Geophysical Research: Space Physics, 121, 2016; doi: 10.1002/2016JA023316

MARSDAILY
Preserving the stress of volcanic uprise on Mars
Paris (ESA) Aug 14, 2017
An ancient mountain range on Mars preserves a complex volcanic and tectonic past imprinted with signs of water and ice interactions. The images, taken on 9 April by the high-resolution stereo camera on ESA's Mars Express, show the Thaumasia mountains and Coracis Fossae, which fringe the huge Solis Planum volcanic plateau from the south. The region lies to the south of the vast Valles ... read more

Related Links
Mars Express
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Analysis of a 'rusty' lunar rock suggests the moon's interior is dry

Call For Ideas For Research On The Deep Space Gateway

Roscosmos Approves Luna-25 Space Station Model in Moon Exploration Project

Moon's magnetic field lasted far longer than once believed

MARSDAILY
China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

MARSDAILY
Large asteroid to safely pass Earth on September 1

Dino-killing asteroid could have thrust Earth into 2 years of darkness

Asteroid Apophis has One in 100,000 chance of hitting Earth

Asteroid 2012 TC4 will fly past Earth in October 2017

MARSDAILY
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets

MARSDAILY
Cassini to begin final five orbits around Saturn

Cassini Prepares to Say Goodbye to a True Titan

NASA finds moon of Saturn has chemical that could form 'membranes'

ALMA confirms complex chemistry in Titan's atmosphere

MARSDAILY
How future volcanic eruptions will impact Earth's ozone layer

Identifying individual atmospheric equatorial waves from a total flow field

NASA-led airborne mission studies storm intensification in northern hemisphere

Nickel key to Earth's magnetic field, research shows

MARSDAILY
System tests prepare Orion for deep space exploration

An era of continuous space communications of with TDRS

NASA launches latest TDRS communications satellite

Russian Space Cameras on ISS May Replace US Models in 2018

MARSDAILY
Earth-like planet in star system only 16 light years away

A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement