Free Newsletters - Space - Defense - Environment - Energy
. Mars Exploration News .

Remaining Martian Atmosphere Still Dynamic
by Staff Writers
Vienna, Austria (JPL) Apr 09, 2013

This image shows the first holes into rock drilled by NASA's Mars rover Curiosity, with drill tailings around the holes plus piles of powdered rock collected from the deeper hole and later discarded after other portions of the sample had been delivered to analytical instruments inside the rover. Image credit: NASA/JPL-Caltech/MSSS.

Mars has lost much of its original atmosphere, but what's left remains quite active, recent findings from NASA's Mars rover Curiosity indicate. Rover team members reported diverse findings at the European Geosciences Union 2013 General Assembly, in Vienna.

Evidence has strengthened this month that Mars lost much of its original atmosphere by a process of gas escaping from the top of the atmosphere.

Curiosity's Sample Analysis at Mars (SAM) instrument analyzed an atmosphere sample last week using a process that concentrates selected gases. The results provided the most precise measurements ever made of isotopes of argon in the Martian atmosphere. Isotopes are variants of the same element with different atomic weights.

"We found arguably the clearest and most robust signature of atmospheric loss on Mars," said Sushil Atreya, a SAM co-investigator at the University of Michigan, Ann Arbor.

SAM found that the Martian atmosphere has about four times as much of a lighter stable isotope (argon-36) compared to a heavier one (argon-38). This removes previous uncertainty about the ratio in the Martian atmosphere from 1976 measurements from NASA's Viking project and from small volumes of argon extracted from Martian meteorites.

The ratio is much lower than the solar system's original ratio, as estimated from argon-isotope measurements of the sun and Jupiter. This points to a process at Mars that favored preferential loss of the lighter isotope over the heavier one.

Curiosity measures several variables in today's Martian atmosphere with the Rover Environmental Monitoring Station (REMS), provided by Spain. While daily air temperature has climbed steadily since the measurements began eight months ago and is not strongly tied to the rover's location, humidity has differed significantly at different places along the rover's route. These are the first systematic measurements of humidity on Mars.

Trails of dust devils have not been seen inside Gale Crater, but REMS sensors detected many whirlwind patterns during the first hundred Martian days of the mission, though not as many as detected in the same length of time by earlier missions.

"A whirlwind is a very quick event that happens in a few seconds and should be verified by a combination of pressure, temperature and wind oscillations and, in some cases, a decrease is ultraviolet radiation," said REMS Principal Investigator Javier Gomez-Elvira of the Centro de Astrobiologia, Madrid.

Dust distributed by the wind has been examined by Curiosity's laser-firing Chemistry and Camera (ChemCam) instrument. Initial laser pulses on each target hit dust. The laser's energy removes the dust to expose underlying material, but those initial pulses also provide information about the dust.

"We knew that Mars is red because of iron oxides in the dust," said ChemCam Deputy Principal Investigator Sylvestre Maurice of the Institut de Recherche en Astrophysique et Planetologie in Toulouse, France. "ChemCam reveals a complex chemical composition of the dust that includes hydrogen, which could be in the form of hydroxyl groups or water molecules."

Possible interchange of water molecules between the atmosphere and the ground is studied by a combination of instruments on the rover, including the Dynamic Albedo of Neutrons (DAN), provided by Russia under the leadership of DAN Principal Investigator Igor Mitrofanov.

For the rest of April, Curiosity will carry out daily activities for which commands were sent in March, using DAN, REMS and the Radiation Assessment Detector (RAD). No new commands are being sent during a four-week period while Mars is passing nearly behind the sun, from Earth's perspective. This geometry occurs about every 26 months and is called Mars solar conjunction.

"After conjunction, Curiosity will be drilling into another rock where the rover is now, but that target has not yet been selected. The science team will discuss this over the conjunction period." said Mars Science Laboratory Project Scientist John Grotzinger, of the California Institute of Technology, Pasadena.

NASA's Mars Science Laboratory Project is using Curiosity to investigate the environmental history within Gale Crater, a location where the project has found that conditions were long ago favorable for microbial life.

Curiosity, carrying 10 science instruments, landed in August 2012 to begin its two-year prime mission. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the project for NASA's Science Mission Directorate in Washington.


Related Links
Mars Science Laboratory
Mars News and Information at
Lunar Dreams and more

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Why Wind Is The Driving Force On Mars
Berlin, Germany (SPX) Mar 15, 2013
The northern hemisphere of Mars is a single, massive lowland with only a few distinctive landscape features. Frequent, intense dust and sand storms are recurrent here over the course of the seasons. When this happens, the wind transports very small particles, which are either deposited in other locations, or, if they encounter rock, leave their mark through the effects of erosion. This typ ... read more

Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

Spooky action at a distance aboard the ISS

First data released from the Alpha Magnetic Spectrometer

Alpha Magnetic Spectrometer Team Publishes First Findings

New crew takes express ride to space station

'Vulcan' wins Pluto moon name vote

Public to vote on names for Pluto moons

The PI's Perspective: The Seven-Year Itch

New Horizons Gets a New Year's Workout

NASA Team Investigates Complex Chemistry At Titan

Saturn is Like an Antiques Shop, Cassini Suggests

'Hot Spots' Ride a Merry-Go-Round on Jupiter

Rhea Rev 183 Raw Preview

Lithuania nabs tax cheats using Google Street View

Satellite imagery helps fight locust plagues in North Africa

First Light for ISERV Pathfinder, Space Station's Newest 'Eye' on Earth

Watching over you

Underwater for outer space

NASA Celebrates Four Decades of Plucky Pioneer 11

Do Intellectual Property Rights on Existing Technologies Hinder Subsequent Innovation

Boeing Completes Preliminary Design Review for Connection Between CST-100 Spacecraft and Rocket

Retired Star Found With Planets And Debris Disc

The Great Exoplanet Debate

NASA Selects Explorer Investigations for Formulation

The Great Exoplanet Debate Part Four

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement