Free Newsletters - Space - Defense - Environment - Energy
. Mars Exploration News .

Prolific NASA Mars Orbiter Passes Big Data Milestone
by Staff Writers
Pasadena CA (JPL) Nov 11, 2013

Artist concept of Mars Reconnaissance Orbiter. Image credit: NASA/JPL.

NASA's Mars Reconnaissance Orbiter, which has overhauled understanding of the Red Planet since 2006, has passed 200 terabits in the amount of science data returned. The data returned by the mission alone is more than three times the total data returned via NASA's Deep Space Network for all the other missions managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., over the past 10 years.

While the 200 terabits number includes all the data this orbiter has relayed to Earth from robots on the surface of Mars, about 99.9 percent of the volume has come from the six science instruments aboard Mars Reconnaissance Orbiter.

The 200 terabits are equivalent to the data volume in three nonstop months of high-definition video. The number does not include the engineering data that specialists operating the orbiter from JPL and Lockheed Martin Space Systems, Denver, use for monitoring its health and performance.

The spacecraft pours data Earthward using a dish antenna 10 feet (3 meters) across and a transmitter powered by 215 square feet (20 square meters) of solar cells. Multiple sessions each day with giant dish antennas of the Deep Space Network in California, Spain and Australia enable Earth to receive such a torrent of data from the orbiter.

"The sheer volume is impressive, but of course what's most important is what we are learning about our neighboring planet," said JPL's Rich Zurek, the project scientist for the Mars Reconnaissance Orbiter.

The orbiter's instruments have examined Mars from subsurface to atmosphere in unprecedented detail. One instrument has provided images revealing features as small as a desk in surface areas equivalent to one-third of the United States (1.92 percent of Mars' surface). Another has covered areas equivalent to about 82 percent of Earth's land area (83.6 percent of Mars' surface), with resolution showing features smaller than a tennis court.

These cameras have viewed many areas repeatedly, providing three-dimensional information from stereo and revealing several types of landscape changes over time. Other instruments identify surface minerals, probe underground layers, examine cross-sections of the atmosphere and track weather globally.

"The mission has taught us about three very different periods of Mars history," Zurek said.

Its observations of the heavily cratered terrains of Mars, the oldest on the planet, show that different types of ancient watery environments formed water-related minerals. Some of these would have been more favorable for life than others. In more recent times, water appears to have cycled as a gas between polar ice deposits and lower-latitude deposits of ice and snow.

Extensive layering in ice or rock probably took hundreds of thousands to millions of years to form. The present climate is also dynamic, with volatile carbon dioxide and, possibly, flows of briny water forming dark streaks that are observed to appear in the warmest seasons and places and fade in colder weather.

"Mars Reconnaissance Orbiter has shown that Mars is still an active planet, with changes such as new craters, avalanches and dust storms," Zurek said. "Mars is a partially frozen world, but not frozen in time."

Each of the 200 trillion bits of science data from the orbiter has followed a complex path, aided by sophisticated software to make it feasible for a small team to handle tens of billions of new bits daily and get the data products to the appropriate scientists.

Data gathered by the orbiter's instruments and relayed from rovers are recorded onto the orbiter's central memory. Each orbit around Mars takes the spacecraft about two hours. For part of each orbit, Mars itself usually blocks the communication path to Earth. When Earth is in view, a Deep Space Network antenna on whichever part of Earth is turned toward Mars at that hour can be listening.

Complex preparations coordinate scheduling the use of the network's antennas by all deep-space missions -- 32 of them this month. Mars Reconnaissance Orbiter typically gets several sessions every day.

"The Deep Space Network collects the incoming data into 30-minute chunks," said Mars Reconnaissance Orbiter software engineer Bryan Allen, of JPL. "At that point, it doesn't matter which products are in it -- just a big pile of bits."

The chunks of mixed data from the antenna stations in California, Spain and Australia come to JPL, where software sorts it into specific products, such as an image from a camera, measurements from a scan of the atmosphere, radar readings from the subsurface sounder, or data from a rover.

Another process at JPL determines which products to send where -- such as to a mineral-mapping team in Maryland, a camera team in Arizona, a radar team in Italy. On a typical recent day, the system sorted 58 billion bits from Mars Reconnaissance Orbiter into 303 data products.

The Mars Reconnaissance Orbiter mission met all its science goals in a two-year primary science phase ending in 2008. Three extensions, the latest beginning in 2012, have added to the science returns. The longevity of this mission and of NASA's even longer-lived Mars Odyssey orbiter, which has been studying Mars since 2002, have given researchers tools to study seasonal and longer-term changes on the Red Planet.


Related Links
Mars Reconnaissance Orbiter
HiRoc at Arizona
Mars News and Information at
Lunar Dreams and more

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

MRO Swapping Motion-Sensing Units
Pasadena CA (JPL) Aug 13, 2013
NASA's Mars Reconnaissance Orbiter is switching from one motion-sensing device to a duplicate unit onboard. The veteran orbiter relies on this inertial measurement unit (IMU) for information about changes in orientation. This information is important for maintaining spacecraft attitude and for pointing the orbiter's large antenna and science-observation instruments. The spacecraft has two identical copies of this motion-sensing device, called IMU-1 and IMU-2. Either of them can be used with either of the spacecraft's redundant main computers. Each contains three gyroscopes and three accelerometers. ... read more

NASA's GRAIL Mission Puts a New Face on the Moon

Moon mission yields clues to face of 'man in the moon'

Shanghai-built lunar rover set for lunar landing

Crowdfunded Lunar Spacecraft Reaches Funding Milestone

China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

The Sounds of New Horizons

On the Path to Pluto, 5 AU and Closing

SwRI study finds that Pluto satellites' orbital ballet may hint of long-ago collisions

Archival Hubble Images Reveal Neptune's "Lost" Inner Moon

Cassini Swings Above Saturn to Compose a Portrait

UI Researchers Help Decode New View of Saturn's Moon Titan, Contribute to Cassini Mission

Cassini Gets New Views of Titan's Land of Lakes

The active Sun boosts Titan's outer atmosphere

Satellites packed like sardines

Global map provides new insights into land use

Sensor Payloads Lift Off With Availability of Complete Hyperspectral Airborne Solution

Seeing in the dark

NASA says new deep space vehicle on time for 2014 test

NASA's Orion Sees Flawless Fairing Separation in Second Test

Lockheed Martin Team Tests Orion's Protective Panels

UCF Lands NASA-Funded Center, Linchpin for Future Space Missions

NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement