Subscribe free to our newsletters via your
  Mars Exploration News  




Subscribe free to our newsletters via your




















Possible Explanation For Migration Of Volcanic Activity On Mars

This illustration shows the mechanism by which CU-Boulder Geophysicist Shijie Zhong believes volcanic activity appears to migrate across the surface of Mars. Zhong's paper in the journal Nature-Geoscience details how he thinks the shell-like outer plate of the planet might be moving, driven by a powerful single plume of hot material affecting an area of thickened crust called the Crustal Dichotomy, thus explaining the migration of volcanic activity in the Tharsis Rise region of Mars. Illustration courtesy of Shijie Zhong
by Staff Writers
Boulder CO (SPX) Dec 17, 2008
Picture a ball. It's an ordinary ball in every way except that it is roughly 4,300 miles in diameter and is moving through the cold of space some 35 million miles from Earth, and hurtling around the sun in just less than two Earth years. This is Mars.

After a first glance at the Martian surface, one may quickly notice two striking global-scale features. The first is the three-mile elevation difference between the northern lowlands and southern highlands, known as the Crustal Dichotomy, which got the name because the highlands and lowlands are underlain by thick and thin crust, respectively.

The second feature is the vast area of high elevation with numerous volcanoes near the equator covering a quarter of the Martian surface, known as the Tharsis Rise.

For a moment consider the tectonic plates that make up the crust of the Earth, including the way they move around the planet, rising from below as molten rock and dipping back down under the surface to melt and complete the chain. Earth is the only planet known to scientists that has this mechanism for moving huge sections of the planet's surface great distances.

This movement accounts for, among other things, the chain of land masses that form the Hawaiian Islands. As the Pacific Plate moves over a plume of molten rock, the islands formed, one after another.

This is not the case on Mars, which appears to have a single plate that encapsulates the entire planet like the shell of an egg. But Shijie Zhong, associate professor of physics at the University of Colorado at Boulder, thinks this shell-like plate might be moving, driven by a powerful, single plume of hot material affecting the area of the thickened crust of the Crustal Dichotomy.

This would explain the migration of volcanic activity in the Tharsis Rise region of the formation of Tharsis, he said.

The possibility of a large-scale, horizontal motion of the outer shell of Mars or similar terrestrial planets and moons has not been previously demonstrated, Zhong said.

Using three-dimensional numerical models to simulate the slow churning of Mars' interior in response to the cooling of the planet, Zhong shows in thenext issue of Nature Geoscience that a single plume of hot material rising through the planet's interior led to the earliest volcanism in the highlands region of the Crustal Dichotomy, simultaneously triggering rotation of the outer shell.

As the shell moved southward over the stationary plume - like a sheet of cardboard over a candle - it shifted the location of the volcanism and created the Tharsis Rise.

Zhong said a very specific set of circumstances had to fall into place to get rotation of the outer shell to occur. First, he said an area of thickened crust needed to form on the planet's surface.

"It is almost universally accepted that the Crustal Dichotomy with the thickened crust in the highlands formed in the first few hundred million years of Mars' existence, and the Tharsis Rise was only formed a few hundred million years later," said Zhong.

Scientists know this because the Tharsis region is nearly devoid of impact sites, unlike the pockmarked surface of the Crustal Dichotomy. "You don't see so many craters," said Zhong. "It's been resurfaced."

Within this smooth environment, obvious features pop from the surface. Volcanoes, in a straight line, mark the Tharsis Rise. One, Olympus Mons - a still active volcano - reaches 15 miles into the Martian sky.

"All the faulting, tectonics and volcanics on Mars in the last 4 billion years happen here, in the Tharsis Rise region," said Zhong.

The second condition is the one-plume convection in the mantle. For the last 10 years, Zhong and his collaborators have studied physical mechanisms for one-plume convection to explain hemispherically asymmetric structures known to have existed for terrestrial planets, including the Crustal Dichotomy and Tharsis Rise on Mars, Supercontinents Pangea and Rodinia on Earth, and mare basalts on the Moon.

Zhong's theory is that a single plume of hot material is jetting from the core of Mars out toward the surface. Where it breaks through, on the Tharsis Rise, it causes volcanoes. But it is the affect that the rising, super-heated material has on the neighboring Crustal Dichotomy's thickened shell that makes the shell of Mars move relative to the underlying mantle and the plume.

"The mechanism I'm describing here is a path to unify the two major features of Mars: the Tharsis Rise and the Crustal Dichotomy," said Zhong.

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of Colorado
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


China To Launch Probe To Mars With Russian Help In 2009
Beijing (RIA Novosti) Dec 08, 2008
China will send a space probe to Mars with Russia's assistance in October 2009, a Chinese newspaper said on Friday.









  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • Papua New Guinea tidal waves displace 75,000: UN
  • Macao's University To Analyze Data From China's Moon Probe
  • Biggest Full Moon Of The Year
  • China's First Moon Probe Lowers Orbit For Further Exploration

  • A New Vision For People In Space
  • NASA Science Highlights At The AGU Meeting
  • ISRO To Redesign Soyuz For Its Manned Space Mission
  • Russia To Take Indian Astronaut On Space Mission In 2013

  • Dawn Glides Into New Year
  • Nine Mementos Headed To The Ninth Planet
  • Outer Solar System Not So Crowded
  • 1,000 Days On The Road To Pluto

  • Unmasking Europa
  • Europa Does The Wave To Generate Heat
  • Exploring Europa On Earth
  • Observing Jupiter To Understand Earth

  • Venus Comes To Life At Wavelengths Invisible To Human Eyes
  • Venus Express Searching For Life On Earth
  • How Windy Is It On Venus
  • Measuring The Winds Of Venus

  • Titan's Volcanoes Give NASA Spacecraft Chilly Reception
  • Saturn's Dynamic Moon Enceladus Shows More Signs Of Activity
  • An Ocean On Enceladus
  • Enceladus Jets: Are They Wet Or Just Wild

  • Eliminating Space Debris - The Quest Continues
  • Space Foundation Recognizes Three GMV Products As Certified Space Technologies
  • Computer industry celebrates 40 years
  • First Muslim-friendly virtual world goes online

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement