Subscribe to our free daily newsletters
  Mars Exploration News  

Subscribe to our free daily newsletters

Next Mars Rover Will Check For Ingredients Of Life

This schematic illustration shows major components of the microwave-oven-size instrument, which was installed into the mission's rover, Curiosity, in January 2011. Image Credit: NASA
by Staff Writers
Pasadena CA (JPL) Jan 19, 2011
Paul Mahaffy, the scientist in charge of the largest instrument on NASA's next Mars rover, watched through glass as clean-room workers installed it into the rover.

The specific work planned for this instrument on Mars requires more all-covering protective garb for these specialized workers than was needed for the building of NASA's earlier Mars rovers.

The instrument is Sample Analysis at Mars, or SAM, built by NASA's Goddard Space Flight Center, Greenbelt, Md. At the carefully selected landing site for the Mars rover named Curiosity, one of SAM's key jobs will be to check for carbon-containing compounds called organic molecules, which are among the building blocks of life on Earth.

The clean-room suits worn by Curiosity's builders at NASA's Jet Propulsion Laboratory, Pasadena, Calif., are just part of the care being taken to keep biological material from Earth from showing up in results from SAM.

Organic chemicals consist of carbon and hydrogen and, in many cases, additional elements. They can exist without life, but life as we know it cannot exist without them. SAM can detect a fainter trace of organics and identify a wider variety of them than any instrument yet sent to Mars. It also can provide information about other ingredients of life and clues to past environments.

Researchers will use SAM and nine other science instruments on Curiosity to study whether one of the most intriguing areas on Mars has offered environmental conditions favorable for life and favorable for preserving evidence about whether life has ever existed there.

NASA will launch Curiosity from Florida between Nov. 25 and Dec. 18, 2011, as part of the Mars Science Laboratory mission's spacecraft. The spacecraft will deliver the rover to the Martian surface in August 2012. The mission plan is to operate Curiosity on Mars for two years.

"If we don't find any organics, that's useful information," said Mahaffy, of NASA's Goddard Space Flight Center. "That would mean the best place to look for evidence about life on Mars may not be near the surface. It may push us to look deeper." It would also aid understanding of the environmental conditions that remove organics.

"If we do find detectable organics, that would be an encouraging sign that the immediate environment in the rocks we're sampling is preserving these clues," he said.

"Then we would use the tools we have to try to determine where the organics may have come from." Organics delivered by meteorites without involvement of biology come with more random chemical structures than the patterns seen in mixtures of organic chemicals produced by organisms.

Mahaffy paused in describing what SAM will do on Mars while engineers and technicians lowered the instrument into its position inside Curiosity this month. A veteran of using earlier spacecraft instruments to study planetary atmospheres, he has coordinated work of hundreds of people in several states and Europe to develop, build and test SAM after NASA selected his team's proposal for it in 2004.

"It has been a long haul getting to this point," he said. "We've taken a set of experiments that would occupy a good portion of a room on Earth and put them into that box the size of a microwave oven."

SAM has three laboratory tools for analyzing chemistry. The tools will examine gases from the Martian atmosphere, as well as gases that ovens and solvents pull from powdered rock and soil samples. Curiosity's robotic arm will deliver the powdered samples to an inlet funnel. SAM's ovens will heat most samples to about 1,000 degrees Celsius (about 1,800 degrees Fahrenheit).

One tool, a mass spectrometer, identifies gases by the molecular weight and electrical charge of their ionized states. It will check for several elements important for life as we know it, including nitrogen, phosphorous, sulfur, oxygen and carbon.

Another tool, a laser spectrometer, uses absorption of light at specific wavelengths to measure concentrations of selected chemicals, such as methane and water vapor. It also identifies the proportions of different isotopes in those gases. Isotopes are variants of the same element with different atomic weights, such as carbon-13 and carbon-12, or oxygen-18 and oxygen-16.

Ratios of isotopes can be signatures of planetary processes. For example, Mars once had a much denser atmosphere than it does today, and if the loss occurred at the top of the atmosphere, the process would favor increased concentration of heavier isotopes in the retained, modern atmosphere.

Methane is an organic molecule. Observations from Mars orbit and from Earth in recent years have suggested transient methane in Mars' atmosphere, which would mean methane is being actively added and subtracted at Mars.

With SAM's laser spectrometer, researchers will check to confirm whether methane is present, monitor any changes in concentration, and look for clues about whether Mars methane is produced by biological activity or by processes that do not require life. JPL provided SAM's laser spectrometer.

SAM's third analytical tool, a gas chromatograph, separates different gases from a mixture to aid identification. It does some identification itself and also feeds the separated fractions to the mass spectrometer and the laser spectrometer. France's space agency, Centre National d'Etudes Spatiales, provided support to the French researchers who developed SAM's gas chromatograph.

NASA's investigation of organics on Mars began with the twin Viking landers in 1976. Science goals of more recent Mars missions have tracked a "follow the water" theme, finding multiple lines of evidence for liquid water - another prerequisite for life - in Mars' past.

The Mars Science Laboratory mission will seek more information about those wet environments, while the capabilities of its SAM instrument add a trailblazing "follow the carbon" aspect and information about how well ancient environments may be preserved.

The original reports from Viking came up negative for organics. How, then, might Curiosity find any? Mahaffy describes three possibilities.

The first is about locations. Mars is diverse, not uniform. Copious information gained from Mars orbiters in recent years is enabling the choice of a landing site with favorable attributes, such as exposures of clay and sulfate minerals good at entrapping organic chemicals. Mobility helps too, especially with the aid of high-resolution geologic mapping generated from orbital observations.

The stationary Viking landers could examine only what their arms could reach. Curiosity can use mapped geologic context as a guide in its mobile search for organics and other clues about habitable environments. Additionally, SAM will be able to analyze samples from interiors of rocks drilled into by Curiosity, rather than being restricted to soil samples, as Viking was.

Second, SAM has improved sensitivity, with a capability to detect less than one part-per-billion of an organic compound, over a wider mass range of molecules and after heating samples to a higher temperature.

Third, a lower-heat method using solvents to pull organics from some SAM samples can check a hypothesis that a reactive chemical recently discovered in Martian soil may have masked organics in soil samples baked during Viking tests.

The lower-heat process also allows searching for specific classes of organics with known importance to life on Earth. For example, it can identify amino acids, the chain links of proteins. Other clues from SAM could also be hints about whether organics on Mars - if detected at all - come from biological processes or without biology, such as from meteorites. Certain carbon-isotope ratios in organics compared with the ratio in Mars' atmosphere could suggest meteorite origin.

Patterns in the number of carbon atoms in organic molecules could be a clue. Researchers will check for a mixture of organics with chains of carbon atoms to see if the mix is predominated either by chains with an even number of carbon atoms or with an odd number. That kind of pattern, rather than a random blend, would be typical of biological assembly of carbon chains from repetitious subunits.

"Even if we see a signature such as mostly even-numbered chains in a mix of organics, we would be hesitant to make any definitive statements about life, but that would certainly indicate that our landing site would be a good place to come back to," Mahaffy said. A future mission could bring a sample back to Earth for more extensive analysis with all the methods available on Earth.

Share This Article With Planet Earth DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook

Related Links
Jet Propulsion Laboratory
Mars News and Information at
Lunar Dreams and more

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

NASA's Next Mars Rover to Zap Rocks With Laser
Pasadena CA (JPL) Dec 28, 2010
A rock-zapping laser instrument on NASA's next Mars rover has roots in a demonstration that Roger Wiens saw 13 years ago in a colleague's room at Los Alamos National Laboratory in New Mexico. The Chemistry and Camera (ChemCam) instrument on the rover Curiosity can hit rocks with a laser powerful enough to excite a pinhead-size spot into a glowing, ionized gas. ChemCam then observes the fla ... read more

Lunar water may have come from comets - scientists

Moon Has Earth-Like Core

The Hunt For The Lunar Core

Rocket City Space Pioneers Announce Partnership With Solidworks

NASA sets final space shuttle mission for June 28

Space Shuttle Program Baselines STS-135

Discovery Mission Specialist Injured But OK

Extra shuttle mission this year in doubt

Japan delays space cargo launch

Cosmonauts To Perform 27th Russian ISS Spacewalk

ISS Resupply From Four Corners Of Globe

Gardening In Space With HydroTropi

Venus probe may get 2nd chance soon

Japan probe shoots past Venus, may meet again in six years

Reflections - Personal and Planetary

Venus Holds Warning For Earth

Cassini To Probe Rhea For Clues To Saturn Rings

New Images Indicate Tectonic Activity On Rhea

Cassini Celebrates 10 Years Since Jupiter Encounter

DLR Researchers Compile Atlas Of Saturn's Moon Rhea, An Icy Alien World

Russia Launches Meteorological Satellite

NASA's Glory Mission Will Study Key Pieces Of Climate Puzzle

St. John, US Virgin Islands

3D Model Of Ionosphere F-Region

ISRO Allocates Resources For Research On Manned Mission

Astronaut Steve Bowen Joins STS-133 Crew

Voyager spacecraft going strong at age 33

Special Aerospace Services Holds First Annual Commercial Human Spaceflight Tech Forum

Inclined Orbits Prevail

Inclined Orbits Prevail In Exoplanetary Systems

Planet Affects A Star's Spin

Kepler Mission Discovers Its First Rocky Planet

The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement