Subscribe to our free daily newsletters
  Mars Exploration News  




Subscribe to our free daily newsletters



Mars Winds Could Pose Stiff Challenge For NASA's Phoenix Lander Team

For a video of Renno's Mars experiments please go here.
by Staff Writers
Ann Arbor MI (SPX) Jul 27, 2007
Martian winds probably won't cause serious problems for NASA's upcoming Phoenix Mars Lander mission but could complicate efforts to collect soil and ice at the landing site, according to University of Michigan atmospheric scientist Nilton Renno. New results from U-M wind tunnel tests suggest that winds could blow away some of the laboriously collected soil and ice, but probably not enough to affect onboard laboratory experiments, said Renno, a member of the Phoenix science team.

"Basically, my conclusion is that if you do the delivery properly and plan it well, you can guarantee that a large fraction of the sample is going to fall inside the instrument intake," said Renno, an associate professor in the U-M College of Engineering's Department of Atmospheric, Oceanic and Space Sciences.

Set for launch from Florida as early as Aug. 3, the Phoenix spacecraft will land on the planet's northern arctic plains, analyzing soil and ice to see if it could support microbial life. An 8-foot robotic arm will scoop up the soil and dump it into onboard science instruments.

With funding from NASA, Renno and his graduate students have been studying the possibility that Martian winds could blow away bits of falling soil and ice as the samples are dropped.

Winds of up to 11 mph are expected much of the time at the Phoenix landing site during the three-month main mission, which begins with arrival on May 25, 2008. Renno calculated that if the soil samples were dropped from a height of 10 centimeters (4 inches) -- as called for in the original mission plan -- the vast majority of the particles wouldn't make it into the instrument intakes under windy conditions.

Based in part on Renno's work, the Phoenix team decided to move the Phoenix scoop closer to the science-instrument intakes before dropping the soil, he said.

Robert Bonitz, lead engineer on the robotic arm team at NASA's Jet Propulsion Laboratory in Pasadena, Calif., said the new plan is to dump the samples from 2 centimeters (0.8 inches). And Washington University in St. Louis researcher Raymond Arvidson, lead scientist on the robotic arm team, said the goal is to deliver samples to the instruments during calm periods.

"With Nilton's tests and Bob's ability to deliver at 2 cm., we should be OK," Arvidson said in an e-mail message. "I am not particularly concerned about wind dispersal of our samples. Just another issue to keep in mind."

To test his wind-dispersal calculations, Renno and his graduate students completed about a dozen wind-tunnel experiments at his Ann Arbor laboratory in recent weeks. They placed a model of the Phoenix robotic-arm scoop inside the cylindrical, 10-foot-long test chamber.

The scoop contained wood grains of various densities to represent bits of martian dust, soil and ice. The grains were released from a height of 5 centimeters into simulated cross winds ranging from 1 to 10 meters per second (2.25 to 22.5 mph), and their trajectories were photographed with a high-speed camera.

Based on the wind-tunnel results, Renno concluded that only about one-third of the Phoenix samples would make it into the science-instrument intakes when dropped from 5 centimeters into winds of a few meters per second.

But losing two-thirds of a hard-won sample during a $420 million mission isn't as calamitous as it might sound, Renno said. The Phoenix instruments need about 1 gram per test, and the scoop will deliver several grams during each dump. So even if two-thirds of the sample blows away, there would be enough soil and ice to complete the test, he said.

And the recent decision to dump from a height of 2 centimeters, along with the plan to deliver samples during calm weather, should further reduce sample losses.

"We will deliver more volume than needed, in case of lateral transport," Arvidson said. "And we will deliver in calm conditions, based on examination of the meteorology data we collect."

Renno leads the Phoenix science team's atmospheric sciences theme group. His main research goal during the mission is to better understand the water cycle at the landing site. Mars is a frigid desert, and liquid water can't survive at the surface.

But subsurface ice exists in the Martian arctic. Some scientists suspect that near-surface ice periodically melts, during warmer parts of long-term climate cycles.

Since liquid water is required by all known forms of life, the melted ice could provide a home for hardy, opportunistic microorganisms. The Phoenix spacecraft is not equipped to detect current or past life, but it can determine if the prerequisites for life are present.

"The main goal of the mission is to see if there are conditions that could allow life to evolve on Mars, Renno said. "Understanding the water cycle will help us answer that question."

Additional U-M tests concerning the dust cloud likely to be kicked up by the Phoenix landing engines have been delayed until September.

NASA's Phoenix mission is led by Peter Smith of the University of Arizona, with project management at the Jet Propulsion Laboratory and development partnership at Lockheed Martin, Denver. International contributions are provided by the Canadian Space Agency; the University of Neuchatel, Switzerland; the University of Copenhagen, Denmark; the Max Planck Institute, Germany; and the Finnish Meteorological Institute.

Community
Email This Article
Comment On This Article

Related Links
Phoenix mission home page
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Europe Asks Thales Alenia Space For The Price Of A Mars Robotic Rover
Cannes, France (UPI) Jul 27, 2007
The European Space Agency has asked Cannes, France, satellite manufacturer Thales Alenia Space to quote a price on the construction of a Mars rover. The French-Italian satellite company announced it will convene a meeting of its major contractors next week to discuss the rover, which the ESA is planning to send to Mars in 2013, the BBC reported Thursday.









  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • Throttling Back To The Moon
  • Moonshine Can Reflect Lunar Composition
  • Northrop Grumman Helps NASA Shape Plans For Affordable Lunar Lander
  • Summer Moon Illusion

  • NASA Faces Congress Scrutiny As Russia Denies US Astronauts Had Chance To Booze
  • NASA Jolted By Boozing Astronauts And Sabotage
  • Raytheon Launches Virtual Summer Camp For Kids
  • Udall Urges Conrad To Question Nussle On NASA Funding

  • Charon: An Ice Machine In The Ultimate Deep Freeze
  • New Horizons Slips Into Electronic Slumber
  • Nap Before You Sleep For Your Cruise Into The Abyss Of Outer Sol
  • The Dwarf Planet Known As Eris Is More Massive Than Pluto

  • Researchers Produce Images Of Gases Escaping From Jupiter Moon Io
  • Hubble Catches Jupiter Changing Its Stripes
  • Fantastic Flyby
  • Pluto-Bound New Horizons Provides New Look At Jupiter System

  • Spacecraft Tandem Provides New Views Of Venus
  • Venusian Rendezvous Results: Chapter One
  • Messenger Flies By Venus And Snaps Some Nice Pixs
  • Venus Express And MESSENGER To Look At Venus In Tandem

  • From Dark Obscurity A Tiny New Saturnian Moon Comes To Light
  • Saturn Turns 60
  • Saturn Moon Iapetus Retains Its Youthful Figure
  • Ring Herding

  • Russia To Have Integrated Radar System By 2010
  • Laser Sets Records In Power And Energy Efficiency
  • UCF And Holochip Announce Global Licensing Agreement For Zoom Lens Patents
  • Nature's Secrets Yield New Adhesive Material

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement