Free Newsletters - Space - Defense - Environment - Energy
. Mars Exploration News .

Los Alamos science sleuth on the trail of a Martian mystery
by Staff Writers
The Woodlands TX (SPX) Mar 21, 2013

This dual image of a Martian rock taken by the ChemCam instrument aboard the Curiosity rover shows a rock at the "Rocknest" area on Mars before it was interrogated with ChemCam's high-powered laser (left) and after interrogation by 600 laser blasts (right). The crosshairs in the darkened portion of the image at right shows where the laser beam penetrated to a depth of at least 1 mm as a result of the repeated shots. The ChemCam laser vaporizes a small amount of material that can be read by a spectrometer to determine the target's composition. Los Alamos National Laboratory postdoctoral researcher Nina Lanza is studying whether Martian rocks are coated with dust or some other substance, and she presented her research at the 44th Lunar and Planetary Science Conference at The Woodlands, Texas. (photo credit: Los Alamos National Laboratory)

When it comes to examining the surface of rocks on Mars with a high-powered laser, five is a magic number for Los Alamos National Laboratory postdoctoral researcher Nina Lanza. During a poster session at the 44th Annual Lunar and Planetary Science Conference at The Woodlands, Texas, Lanza described how the laser-shooting ChemCam instrument aboard the Curiosity rover currently searching the surface of Mars for signs of habitability has shown what appears to be a common feature on the surface of some very different Martian rocks during Curiosity's first 90 days on the Red Planet.

But exactly what that common feature is remains an intriguing mystery-and one that Lanza intends to solve.

The ChemCam instrument uses an extremely powerful laser to vaporize a pinpoint of rock surface. The instrument then reads the chemical composition of the vaporized sample with a spectrometer. The highly accurate laser can fire multiple pulses in the same spot, providing scientists with an opportunity to gently interrogate a rock sample, even up to a millimeter in depth. Many rocks are zapped 30 to 50 times in a single location, and one rock was zapped 600 times.

Members of the ChemCam team generally discard results from the first five laser blasts because of a belief that after the first five blasts, the laser has penetrated to a depth that provides a true representative sample of rock chemistry.

Instead of tossing out those data, however, Lanza looked at them specifically across a diverse set of Martian rocks. She found that the first five shots had chemical similarities regardless the rock type. What's more, after five shots, like other scientists had noticed, the spectrum from the vaporized rock stabilized into a representative sample of the rock type below.

"Why is it always five shots?" Lanza wondered.

It could be the first five shots were reading a layer of dust that had settled onto the surface of every rock, but results in laboratories on Earth seem to indicate that the first laser blast creates a tiny shockwave that is very effective at clearing dust from the sample.

Therefore, if the first blast is dusting off the rocks, the remaining four blasts could be showing that Martian rocks are coated by a substance, similar in structure if not composition, to the dark rock varnish appearing on Earth rocks in arid locations like the desert Southwest.

"The thing about rock varnishes is the mechanism behind why they form is not clearly understood," Lanza said. "Some people believe that rock varnish results from an interaction of small amounts of water from humidity in the air with the surface of rocks-a chemical reaction that forms a coating. Others think there could be a biological component to the formation of rock varnishes, such as bacteria or fungi that interact with dust on the rocks and excrete varnish components onto the surface."

Lanza is quick to point out that she's making no concrete claim as to the identity or origin of whatever is being seen during the first five shots of each ChemCam sampling. The common signature from the first five blasts could indeed be entirely surface dust, or it could be a rock coating or a rind formed by natural weathering processes.

As the mission progresses, Lanza hopes that integrating other instruments aboard Curiosity with ChemCam sampling activities could help rule out unknowns such as surface dust, while careful experiments here on Earth could provide crucial clues for solving the Martian mystery of the first five shots.

"If we can find a reason for this widespread alteration of the surface of Martian rocks, it will tell us something about the Martian environment and the amount of water present there," Lanza said.

"It will also allow us to make the argument that what we're seeing is the result of some kind of current geological process, which could give us insight into extraterrestrial geology or even terrestrial geology if what we're seeing is a coating similar to what we find here on Earth."


Related Links
Los Alamos National Laboratory
Mars News and Information at
Lunar Dreams and more

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Curiosity Mars Rover Sees Trend in Water Presence
The Woodlands TX (SPX) Mar 20, 2013
NASA's Mars rover Curiosity has seen evidence of water-bearing minerals in rocks near where it had already found clay minerals inside a drilled rock. Last week, the rover's science team announced that analysis of powder from a drilled mudstone rock on Mars indicates past environmental conditions that were favorable for microbial life. Additional findings presented March 18 at a news briefi ... read more

NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Woman expected again to join next China crew roster

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

Space crew returns to Earth from ISS

Canadian commands space station for first time

'Vulcan' wins Pluto moon name vote

Public to vote on names for Pluto moons

The PI's Perspective: The Seven-Year Itch

New Horizons Gets a New Year's Workout

'Hot Spots' Ride a Merry-Go-Round on Jupiter

Rhea Rev 183 Raw Preview

Cassini Makes Last Close Flyby of Saturnian Moon Rhea

A Window into Europa's Ocean Right at the Surface

CSTARS Awarded Funding Over Three Years By Office of Naval Research

Google Maps adds view from Mt. Everest

Significant reduction in temperature and vegetation seasonality over northern latitudes

GOCE: the first seismometer in orbit

NASA Voyager Status Update on Voyager 1 Location

Voyager 1 has entered a new region of space

NASA denies report that Voyager left solar system

Reproduction In Zero Gravity

Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

The Great Exoplanet Debate

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement