Subscribe free to our newsletters via your
  Mars Exploration News  




Subscribe free to our newsletters via your




















MARSDAILY
Hot rocks, not warm atmosphere, led to relatively recent water-carved valleys on Mars
by Staff Writers
Providence RI (SPX) Jun 14, 2017


Lyot Crater, rendered here with elevations exaggerated, is home to relatively recent water-carved valleys (denoted in white). New research suggests that water came from melting snow and ice present at the time of the crater-forming impact. Credit David Weiss/Brown/NASA

Present-day Mars is a frozen desert, colder and more arid than Antarctica, and scientists are fairly sure it's been that way for at least the last 3 billion years. That makes a vast network of water-carved valleys on the flanks of an impact crater called Lyot - which formed somewhere between 1.5 billion and 3 billion years ago - something of a Martian mystery. It's not clear where the water came from.

Now, a team of researchers from Brown University has offered what they see as the most plausible explanation for how the Lyot valley networks formed. They conclude that at the time of the Lyot impact, the region was likely covered by a thick layer of ice. The giant impact that formed the 225-kilometer crater blasted tons of blazing hot rock onto that ice layer, melting enough of it to carve the shallow valleys.

"Based on the likely location of ice deposits during this period of Mars' history, and the amount of meltwater that could have been produced by Lyot ejecta landing on an ice sheet, we think this is the most plausible scenario for the formation of these valleys" said David Weiss, a recent Ph.D. graduate from Brown and the study's lead author.

Weiss co-authored the study, which is published in Geophysical Research Letters, with advisor and Brown planetary science professor Jim Head, along with fellow graduate students Ashley Palumbo and James Cassanelli.

There's plenty of evidence that water once flowed on the Martian surface. Water-carved valley networks similar to those at Lyot have been found in several locations. There's also evidence for ancient lake systems, like those at Gale Crater where NASA's Curiosity rover is currently exploring and at Jezero Crater where the next rover may land.

Most of these water-related surface features, however, date back to very early in Mars' history - the epochs known as the Noachian and the Hesperian, which ended about 4 billion and 3 billion years ago respectively. From about 3 billion years ago to the present, Mars has been in a bone-dry period called the Amazonian.

The valley networks at Lyot therefore are a rare example of more recent surface water activity. Scientists have dated the crater itself to the Amazonian, and the valley networks appear to have been formed around the same time or shortly after the impact. So the question is: Where did all that water come from during the arid Amazonian?

Scientists have posited a number of potential explanations, and the Brown researchers set out to investigate several of the major ones.

One of those potential explanations, for example, is that there might have been a vast reservoir of groundwater when the Lyot impact occurred. That water, liberated by impact, could have flowed onto the surface along the periphery of the crater and carved the valleys. But based on geological evidence, the researchers say, that scenario is unlikely

"If these were formed by deep groundwater discharge, that water would have also flowed into the crater itself," Weiss said. "We don't see any evidence that there was water present inside the crater."

The researchers also looked at the possibility of transient atmospheric effects following the Lyot impact. A collision of this size would have vaporized tons of rock, sending a plume of vapor into the air. As that hot plume interacted with the cold atmosphere, it could have produced rainfall that some scientists think might have carved the valleys.

But that, too, appears unlikely, the researchers concluded. Any rain related to the plume would have fallen after the rocky impact ejecta had been deposited outside the crater. So if rainwater carved the valleys, one would expect to see valleys cutting through the ejecta layer. But there are almost no valleys directly on the Lyot ejecta. Rather, Palumbo said, "The vast majority of the valleys seem to emerge from beneath the ejecta on its outer periphery, which casts serious doubt on the rainwater scenario."

That left the researchers with the idea that meltwater, produced when hot ejecta interacted with an icy surface, carved the Lyot valleys.

According to models of Mars' climate history, ice now trapped mainly at the planet's poles often migrated into the mid-latitude regions where Lyot is located. And there's evidence to suggest that an ice sheet was indeed present in the region at the time of the impact.

Some of that evidence comes from the scarcity of secondary craters at Lyot. Secondary craters form when big chunks of rock blasted into the air during a large impact fall back to the surface, leaving a smattering of small craters surrounding the main crater. At Lyot, there far fewer secondary craters than one would expect, the researchers say.

The reason for that, they suggest, is that instead of landing directly on the surface, ejecta from Lyot landed on a thick layer of ice, which prevented it from gouging the surface beneath the ice. Based on the terrain on the northern side of Lyot, the team estimates that the ice layer could have been anywhere from 20 to 300 meters thick.

The Lyot impact would have spat tons of rock onto that ice layer, some of which would have been heated to 250 degrees Fahrenheit or more. Using a thermal model of that process, the researchers estimate that the interaction between those hot rocks and a surface ice sheet would have produced thousands of cubic kilometers of meltwater - easily enough to carve the valley seen at Lyot.

"What this shows is a way to get large amounts of liquid water on Mars without the need for a warming of the atmosphere and any liquid groundwater," Cassanelli said. "So we think this is a good explanation for how you get these channels forming in the Amazonian."

And it's possible, Head says, that this same mechanism could have been important before the Amazonian. Some scientists think that even in the early Noachian and Hesperian epochs, Mars was still quite cold and icy. If that was the case, then this meltwater mechanism might have also been responsible for at least some of the more ancient valley networks on Mars.

"It's certainly a possibility worth investigating," Head said.

Research paper

MARSDAILY
Window to a watery past on Mars
Paris (ESA) Jun 09, 2017
This 70 km-wide crater and its surrounds offer a window into the watery past of the Red Planet. The scene, captured by ESA's Mars Express, is a composite of two images taken in March 2007 and February 2017. It focuses on a large crater in the Margaritifer Terra region in the southern hemisphere of Mars, and includes a portion of Erythraeum Chaos to the north (right in the main colour image ... read more

Related Links
Brown University
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
New NELIOTA project detects flashes from lunar impacts

Russian aerospace firm to cooperate with China on Lunar exploration missions

Cube Quest Challenge Team Spotlight: Cislunar Explorers

Winning plans for CubeSats to the Moon

MARSDAILY
What China's space ambitions have to do with politics

Reusable craft are in CASIC's plans

China's 1st astronaut details projects for orbital station, manned lunar visit

Moon or Mars - humanity's next stop

MARSDAILY
Rosetta finds comet connection to Earth's atmosphere

Scientists solve meteorite mystery with high-pressure X-ray experiments

High-pressure experiments solve meteorite mystery

NASA's Asteroid-Hunting Spacecraft a Discovery Machine

MARSDAILY
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter

MARSDAILY
In a Cosmic Hit-and-Run, Icy Saturn Moon May Have Flipped

Cassini Finds Saturn Moon May Have Tipped Over

Cassini Looks On as Solstice Arrives at Saturn

History of Titan's Landscape Resembles Mars's, not Earth's

MARSDAILY
NASA satellites image, measure Florida's extreme rainfall

The heat is on for Sentinel-3B

exactEarth Launches Revolutionary Global Real-Time Maritime Tracking and Information Service

Earth is a jewel, says astronaut after six months away

MARSDAILY
Pence hails new NASA astronauts as 'best of us'

Additional Astronaut on the Space Station Means Dozens of New Team Members on the Ground

To Be or Not to Be: At 20 ISS Goes Strong, But for How Long

Russia's New 'Federation' Spacecraft to be Launched from Baikonur in 2022

MARSDAILY
The Art of Exoplanets

A planet hotter than most stars

OU astrophysicist identifies composition of Earth-size planets in TRAPPIST-1 system

ALMA Finds Ingredient of Life Around Infant Sun-like Stars




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement