Subscribe to our free daily newsletters
  Mars Exploration News  




Subscribe to our free daily newsletters



MARSDAILY
Fresh Look at Old Data Yields Surprise Near Martian Equator
by Staff Writers
Pasadena CA (JPL) Oct 03, 2017


Re-analysis of 2002-2009 data from a hydrogen-finding instrument on NASA's Mars Odyssey orbiter increased the resolution of maps of hydrogen abundance. Image Credit: NASA/JPL-Caltech/Univ. of Arizona

Scientists taking a new look at older data from NASA's longest-operating Mars orbiter have discovered evidence of significant hydration near the Martian equator - a mysterious signature in a region of the Red Planet where planetary scientists figure ice shouldn't exist.

Jack Wilson, a post-doctoral researcher at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, led a team that reprocessed data collected from 2002 to 2009 by the neutron spectrometer instrument on NASA's Mars Odyssey spacecraft. In bringing the lower-resolution compositional data into sharper focus, the scientists spotted unexpectedly high amounts of hydrogen - which at high latitudes is a sign of buried water ice - around sections of the Martian equator.

An accessible supply of water ice near the equator would be of interest in planning astronaut exploration of Mars. The amount of delivered mass needed for human exploration could be greatly reduced by using Martian natural resources for a water supply and as raw material for producing hydrogen fuel.

By applying image-reconstruction techniques often used to reduce blurring and remove "noise" from medical or spacecraft imaging data, Wilson's team improved the spatial resolution of the data from around 320 miles to 180 miles (520 kilometers to 290 kilometers). "It was as if we'd cut the spacecraft's orbital altitude in half," Wilson said, "and it gave us a much better view of what's happening on the surface."

The neutron spectrometer can't directly detect water, but by measuring neutrons, it can help scientists calculate the abundance of hydrogen - and infer the presence of water or other hydrogen-bearing substances. Mars Odyssey's first major discovery, in 2002, was abundant hydrogen just beneath the surface at high latitudes.

In 2008, NASA's Phoenix Mars Lander confirmed that the hydrogen was in the form of water ice. But at lower latitudes on Mars, water ice is not thought to be thermodynamically stable at any depth. The traces of excess hydrogen that Odyssey's original data showed at lower latitudes were initially explained as hydrated minerals, which other spacecraft and instruments have since observed.

Wilson's team concentrated on those equatorial areas, particularly with a 600-mile (1,000-kilometer) stretch of loose, easily erodible material between the northern lowlands and southern highlands along the Medusae Fossae formation.

Radar-sounding scans of the area have suggested the presence of low-density volcanic deposits or water ice below the surface, "but if the detected hydrogen were buried ice within the top meter of the surface, there would be more than would fit into pore space in soil," Wilson said.

The radar data came from both the Shallow Radar on NASA's Mars Reconnaissance Orbiter and the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the European Space Agency's Mars Express orbiter and would be consistent with no subsurface water ice near the equator.

How water ice could be preserved there is a mystery. A leading theory suggests an ice and dust mixture from the polar areas could be cycled through the atmosphere when Mars' axial tilt was larger than it is today.

But those conditions last occurred hundreds of thousands to millions of years ago. Water ice isn't expected to be stable at any depth in that area today, Wilson said, and any ice deposited there should be long gone.

Additional protection might come from a cover of dust and a hardened "duricrust" that traps the humidity below the surface, but this is unlikely to prevent ice loss over timescales of the axial tilt cycles.

"Perhaps the signature could be explained in terms of extensive deposits of hydrated salts, but how these hydrated salts came to be in the formation is also difficult to explain," Wilson added. "So for now, the signature remains a mystery worthy of further study, and Mars continues to surprise us."

Wilson led the research while at Durham University in the U.K. His team - which includes members from NASA Ames Research Center, the Planetary Science Institute and the Research Institute in Astrophysics and Planetology - published its findings this summer in the journal Icarus.

"Equatorial Locations of Water on Mars: Improved Resolution Maps Based on Mars Odyssey Neutron Spectrometer Data," Jack T. Wilson et al., 2018 Jan. 1, Icarus

MARSDAILY
3-D Analysis Offers New Info on Martian Climate Change, Age of Polar Caps
Tucson AZ (SPX) Sep 26, 2017
Three-dimensional (3-D) subsurface radar volumes generated from thousands of 2-D radar profiles are revealing new information about the polar regions of Mars, including more accurate mapping of CO2 and water ices, the discovery of buried impact craters, and new elevation data. PSI Senior Scientist Nathaniel E. Putzig is the lead author of the new Icarus paper "Three-dimensional radar imaging of ... read more

Related Links
Mars Odyssey NASA
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Chinese moon missions delayed by rocket failure: report

Russian space agency, NASA agree to co-build lunar-orbit space station

NASA, Roscosmos Sign Joint Statement on Researching, Exploring Deep Space

Moon village the first stop to Mars: ESA

MARSDAILY
China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

Spacecraft passes docking test

MARSDAILY
Hubble Observes the Farthest Active Inbound Comet Yet Seen

Unexpected Surprise: A Final Image from Rosetta

NASA's Near-Earth Asteroid CubeSat Goes Full Sail

Nanosat Fleet Proposed for Voyage to 300 Asteroids

MARSDAILY
Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names

MARSDAILY
NASA's $3.9 bn Cassini spacecraft makes death plunge into Saturn

Cassini Spacecraft Demise Is Bittersweet for PSI's Hansen

Aerojet Rocketdyne propulsion guides Cassini to its Grand Finale at Saturn

CU Boulder Scientists Ready for Cassini Mission to Saturn Grand Finale

MARSDAILY
Public Invited to Analyze Photos Taken by International Space Station Astronauts

Scientists monitor Silicon Valley's underground water reserves - from space

OSIRIS-REx views Pacifica on Earth Flyby

How aerial thermal imagery is revolutionizing archaeology

MARSDAILY
Fast-moving space industries create new ethical challenges

Space Cooperation Between China, Russia Needs Long-Term Mechanism

NASA's New Hubble E-Book Series Dives into the Solar System and Beyond

Mapping NASA's Space Missions

MARSDAILY
Glenn Tests Thruster Bound for Metal World

Searching for Distant Worlds With a Flying Telescope

Scientists propose new concept of terrestrial planet formation

The return of the comet-like exoplanet




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement