Subscribe free to our newsletters via your
. Mars Exploration News .

Forces of Martian Nature
by Staff Writers
Paris (ESA) Jul 11, 2014

This is a colour-coded topography map of a portion of the western rim of the Hellas basin. The crater shown in the upper left is on the periphery of this larger impact basin. The edge of the Hellas basin is traced by a string of rocky peaks known as the Hellespontus Montes - revealed as the red/white ridge in this topography map thanks to their height. White and red show the highest terrains, while blue and purple show the deepest. The image is based on a digital terrain model of the region, from which the topography of the landscape has been derived. The image was created using data acquired with the High Resolution Stereo Camera on ESA's Mars Express on 13 January 2014 during orbit 12 750. North is to the right, east is up. Image courtesy ESA/DLR/FU Berlin. For a larger version of this image please go here.

The surface of Mars is pocked and scarred with giant impact craters and rocky ridges, as shown in this new image from ESA's Mars Express that borders the giant Hellas basin in the planet's southern hemisphere.

The Hellas basin, some 2300 km across, is the largest visible impact structure in the Solar System, covering the equivalent of just under half the land area of Brazil.

The images presented here were taken on 13 January 2014 by the high-resolution stereo camera on Mars Express and feature a portion of the western rim of the Hellas basin, which slopes into the foreground.

This view highlights the Hellespontus Montes, a rough chain of mountain-like terrain that runs around the rim of the basin, seen here as an uneven ridge curving across the top of the main colour, topography and 3D images, and extending to the right in the perspective view.

This feature is a product of the final stages of the formation of the vast Hellas impact basin itself, most likely as the basin walls - which were first pushed outwards by the extraordinary forces at work during the formation of the basin - later collapsed and sank inwards to create the observed stair-stepped shape.

Several craters throughout the scene display wrinkled and rippled features: the close-up of the crater in the foreground of the perspective view highlights a particularly interesting example where the wrinkles form a roughly concentric pattern, with ever-smaller arcs towards the structure's centre.

This type of feature is known as 'concentric crater fill', and is thought to be associated with snowfall and freezing cycles in an earlier and wetter period of martian history.

During this period, snow fell and covered the surface and later moved downhill into the crater. Once inside the crater, the snow became trapped and soon covered by surface dust, before compacting to form ice.

The number of concentric lines indicates many cycles of this process and it is possible that craters like these may still be rich in ice hidden beneath just tens of metres of surface debris.

Meanwhile, the largest impact crater in the image (top left in the main colour, topography and 3D images) shows a degraded, layered crater deposit with several 'islands' of material that have been eroded by powerful winds.

Here and elsewhere in the scene, the formation of dunes building up around impact structures and at the base of Hellespontus Montes further indicates the role of strong winds shaping this scene.

Last but certainly not least, intricate valleys lead down from the Hellespontus Montes and weave through and across the smoother surrounding plains.

This complex region shows that many of nature's forces have left their mark here over time, from the formation of the Hellas basin billions of years ago, to the slow and steady changes created by wind and snowfall over millions of years.


Related Links
Mars Express
Mars News and Information at
Lunar Dreams and more

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

NASA's 'flying saucer' tests new Mars-landing technology
Washington (AFP) June 29, 2014
NASA sent a saucer-like vehicle high into the sky Saturday to test technology for a future Mars landing, but its parachute tangled when deployed and the spacecraft splashed into the Pacific Ocean. The test began when the US space agency attached its "Low-Density Supersonic Decelerator" vehicle to a helium balloon the size of a football field, the largest ever deployed, at a military base on ... read more

NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

Orbital Targets July 11 For ISS Commercial Resupply Mission

Space junk damages ISS US segment

NASA Television Coverage Set for Orbital-2 Mission to Space Station

Spot the Space Station looking at you

What If Voyager Had Explored Pluto?

The PI's Perspective - Childhood's End

Final Pre-Pluto Annual Checkout Begins

Hubble Begins Search Beyond Pluto For Potential Flyby Targets

Saturn's moon Titan has a very salty ocean

Cassini Celebrates 10 Years Exploring Saturn

Cassini Names Final Mission Phase Its 'Grand Finale'

Mysterious 'Magic Island' appears on Saturn moon

NASA's Aquarius Returns Global Maps of Soil Moisture

GPM Satellite Sees First Atlantic Hurricane

Taking NASA-USGS's Landsat 8 to the Beach

Tips from space give long-range warning of flood risk

Sun Sends More 'Tsunami Waves' to Voyager 1

Privately funded solar spacecraft to launch in 2016

Space Launch System Core Stage Passes Critical Design Review

Taiwan's tourism revenue hits record high in 2013

Newfound Frozen World Orbits in Binary Star System

Discovery expands search for Earth-like planets

Astronomers discover most Earth-like of all exoplanets

Mega-Earth in Draco Smashes Notions of Planetary Formation

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.