Subscribe free to our newsletters via your
  Mars Exploration News  




Subscribe free to our newsletters via your




















MARSDAILY
Ancient Mars impacts created tornado-like winds that scoured surface
by Staff Writers
Providence RI (SPX) May 12, 2017


An infrared image reveals strange bright streaks extending from Santa Fe crater on Mars. Researchers suggest the streaks were caused by tornado-force winds created by the impact that formed the crater. Credit: NASA/JPL-Caltech/Arizona State University

In looking at NASA images of Mars a few years ago, Brown University geologist Peter Schultz noticed sets of strange bright streaks emanating from a few large-impact craters on the planet's surface. The streaks are odd in that they extend much farther from the craters than normal ejecta patterns, and they are only visible in thermal infrared images taken during the Martian night.

Using geological observation, laboratory impact experiments and computer modeling, Schultz and Brown graduate student Stephanie Quintana have offered a new explanation for how those streaks were formed. They show that tornado-like wind vortices - generated by crater-forming impacts and swirling at 500 miles per hour or more - scoured the surface and blasted away dust and small rocks to expose the blockier surfaces beneath.

"This would be like an F8 tornado sweeping across the surface," Schultz said. "These are winds on Mars that will never be seen again unless another impact."

The research is published online in the journal Icarus.

Schultz says he first saw the streaks during one of his "tours of Mars." In his downtime between projects, he pulls up random images from NASA's orbital spacecraft just to see if he might spot something interesting. In this case, he was looking at infrared images taken during the Martian nighttime by the THEMIS instrument, which flies aboard the Mars Odyssey orbiter.

The infrared images capture contrasts in heat retention on the surface. Brighter regions at night indicate surfaces that retain more heat from the previous day than surrounding surfaces, just as grassy fields cool off at night while buildings in the city remain warmer.

"You couldn't see these things at all in visible wavelength images, but in the nighttime infrared they're very bright," Schultz said. "Brightness in the infrared indicates blocky surfaces, which retain more heat than surfaces covered by powder and debris. That tells us that something came along and scoured those surfaces bare."

And Schultz had an idea what that something might be. He has been studying impacts and impact processes for years using NASA's Vertical Gun Range, a high-powered cannon that can fire projectiles at speeds up to 15,000 miles per hour.

"We had been seeing some things in experiments we thought might cause these streaks," he said.

When an asteroid or other body strikes a planet at high speed, tons of material from both the impactor and the target surface are instantly vaporized. Schultz's experiments showed that vapor plumes travel outward from an impact point, just above the impact surface, at incredible speeds. Scaling laboratory impacts to the size of those on Mars, a vapor plume's speed would be supersonic. And it would interact with the Martian atmosphere to generate powerful winds.

The plume and its associated winds on their own didn't cause the strange streaks, however. The plumes generally travel just above the surface, which prevents the kind of deep scouring seen in the streaked areas. But Schultz and Quintana showed that when the plume strikes a raised surface feature, it disturbs the flow and causes powerful tornadic vortices to form and drop to the surface. And those vortices, the researchers say, are responsible for scouring the narrow streaks.

Schultz and Quintana showed that the streaks are nearly always seen in conjunction with raised surface features. Very often, for example, they are associated with the raised ridges of smaller impact craters that were already in place when the larger impact occurred. As the plume raced outward from the larger impact, it encountered the small crater rim, leaving bright twin streaks on the downwind side.

"Where these vortices encounter the surface, they sweep away the small particles that sit loose on the surface, exposing the bigger blocky material underneath, and that's what gives us these streaks," Schultz said.

Schultz says the streaks could prove useful in establishing rates of erosion and dust deposition in areas where the streaks are found.

"We know these formed at the same time as these large craters, and we can date the age of the craters," Schultz said. "So now we have a template for looking at erosion."

But with more research, the streaks could eventually reveal much more than that. From a preliminary survey of the planet, the researchers say the streaks appear to form around craters in the ballpark of 20 kilometers across. But they don't appear in all such craters. Why they form in some places and not others could provide information about the Martian surface at the time of the impact.

The researchers' experiments reveal that the presence of volatile compounds - a thick layer of water ice on the surface or subsurface, for example - affect the amount the vapor that rushes out from an impact. So in that way, the streaks might serve as indicators of whether ice may have been present at the time of an impact, which could lend insight into reconstructions of past climate on Mars. Equally possible, the streaks could be related to the composition of the impactor, such as rare collisions by high-volatile objects, such as comets.

"The next step is to really dig into the conditions that cause the streaks," Schultz said. "They may have a lot to tell us, so stay tuned."

MARSDAILY
NASA's MAVEN reveals Mars has metal in its atmosphere
Washington DC (SPX) Apr 12, 2017
Mars has electrically charged metal atoms (ions) high in its atmosphere, according to new results from NASA's MAVEN spacecraft. The metal ions can reveal previously invisible activity in the mysterious electrically charged upper atmosphere (ionosphere) of Mars. "MAVEN has made the first direct detection of the permanent presence of metal ions in the ionosphere of a planet other than Earth, ... read more

Related Links
Brown University
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Winning plans for CubeSats to the Moon

Printing bricks from moondust using the Sun's heat

NASA selects ASU's ShadowCam for moon mission

Russia, US Ready to Give You a Lift to Moon Orbit, ISS

MARSDAILY
A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

MARSDAILY
Twisting an Asteroid

The Aerospace Corporation leads Asteroid Impact Exercise at IAA in Tokyo

Oldest buckthorn fossilized flowers found in Argentina

Caltech: Chemical Engineer Explains Oxygen Mystery on Comets

MARSDAILY
Waves of lava seen in Io's largest volcanic crater

Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever

The PI's Perspective: No Sleeping Back on Earth!

ALMA investigates 'DeeDee,' a distant, dim member of our solar system

MARSDAILY
New Movie Shows Cassini's First Dive over Saturn

Cassini Finds 'The Big Empty' Close to Saturn

Saturn spacecraft toting CU Boulder instrument starts swan song

NASA Spacecraft Dives Between Saturn and Its Rings

MARSDAILY
How satellite data led to a breakthrough for Lake Erie toxic algal blooms

Is Climate Changing Cloud Heights? Too Soon to Say

Ice Particles in Earth's Atmosphere Create Bright Flashes Seen from Space

In measuring gas exchange between water and air, size matters

MARSDAILY
'Awesomesauce,' proclaims US astronaut on historic spacewalk

Six-legged livestock - sustainable food production

External commercial ISS platform starts second mission

NASA Receives Proposals for Future Solar System Mission

MARSDAILY
'Warm Neptune' Has Unexpectedly Primitive Atmosphere

Astrophysicists find that planetary harmonies around TRAPPIST-1 save it from destruction

Two Webb instruments well suited for detecting exoplanet atmospheres

Variable Winds on Hot Giant Exoplanet Help Study of Magnetic Field




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement